Have a personal or library account? Click to login
Non-alcoholic beer production – an overview Cover

Non-alcoholic beer production – an overview

Open Access
|Jan 2019

References

  1. 1. Wiśniewski, P. (1993). Piwa historie niezwykłe. Warszawa: Print Shops PREGO .
  2. 2. Stępień, M. (2000). Kodeks Hammurabiego. Alfa-Wero.
  3. 3. Cichowski, K. (2006). Najstarsze centrum browarnicze w delcie Nilu. Alma Mater UJ. 83, 71.
  4. 4. Ciałowicz, K.M. (2008). 10 lat badań na Wzgórzu Kurczaka. Alma Mater UJ, 99, 202.
  5. 5. Hornsey, I.S. (2003). History of Beer and Brewing. London: RSC Publishing. DOI:10.1039/9781847550026.10.1039/9781847550026
  6. 6. Fałat, Z. (2005). Wszystko o piwie. Warszawa-Rzeszów: Ad Oculos.
  7. 7. Dylkowski, W. (1963). Technologia browarnictwa. Warszawa: Wydawnictwo przemysłu lekkiego i spożywczego.
  8. 8. Scurlock, J. & Andersen, B. (2005). Diagnoses in Assyrian and Babylonian Medicine: Ancient Sources, Translations, and Modern Medical Analyses. Urbana: University of Illinois Press.
  9. 9. D’Arms, J.H. (1995). Heavy Drinking and Drunkenness in the Roman World: Four Questions for Historians. O. Murray & M. Tecusan eds. In Vino Veritas. London: British School at Rome, 304-317.
  10. 10. Powell, A.M. (1993). Drugs and Pharmaceuticals in ancient Mesopotamia. The Healing Past, 47-67.10.1163/9789004377325_004
  11. 11. Nelson, M. (2016). To your health! The role of beer in ancient medicine. In W. H. Salazar (Ed.), Beer: Production, consumption and health effects (pp. 1-25). Nova Science Publishers.
  12. 12. O’Shea, R.S., Dasarathy, S. & McCullough, A.J. (2010). Alcoholic liver disease. Hepatology, 51(1), 307-328. DOI:10.1002/hep.2325810.1002/hep.23258
  13. 13. Fadda, F. (1998). Chronic ethanol consumption:from neuroadaptation to neurodegeneration. Prog. Neurobiol. 56(4), 385-431. DOI: 10.1016/S0301-0082(98)00032-X.10.1016/S0301-0082(98)00032-X
  14. 14. Hermens, D.F. & Lagopoulos, J. (2018). Binge drinking and the young brain: A mini review of the neurobiological underpinnings of alcohol-induced blackout. Front. Psychol. 9, 1-7. DOI: 10.3389/fpsyg.2018.0001210.3389/fpsyg.2018.00012
  15. 15. Boffetta, P. & Hashibe, M. (2006). Alcohol and cancer. Lancet Oncol. 7(2), 149-156. DOI: 10.1016/S1470-2045(06)70577-010.1016/S1470-2045(06)70577-0
  16. 16. Stevens, J.F. & Page, J.E. (2004). Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry 65(10), 1317-1330. DOI: 10.1016/j.phytochem.2004.04.025.10.1016/j.phytochem.2004.04.02515231405
  17. 17. Zołnierczyk, A.K., Mączka, W.K., Grabarczyk, M., Wińska, K., Woźniak, E. & Anioł, M. (2015). Isoxanthohumol - Biologically active hop flavonoid. Fitoterapia, 103, 71-82. DOI: .10.1016/j.fitote.2015.03.00710.1016/j.fitote.2015.03.00725771121
  18. 18. Ayabe, T., Ohya, R., Kondo, K. & Ano, Y. (2018). Iso- α-acids, bitter components of beer, prevent obesity-induced cognitive decline. Scient. Reports, 8(1), 4760. DOI: 10.1038/s41598-018-23213-9.10.1038/s41598-018-23213-9585918229555941
  19. 19. Mojka, K. (2013). Charakterystyka mlecznych napojów fermentowanych. Probl. Hig. Epidemiol., 94(4)(4), 722-729.
  20. 20. Art. 94 pkt 1 Ustawy o podatku akcyzowym (Dz.U. z 2017 r. poz. 43). Poland.10.18778/1509-877X.2018.01.03
  21. 21. Müller, M., Bellut, K., Tippmann, J. & Becker, T. (2017). Physical Methods for Dealcoholization of Beverage Matrices and their Impact on Quality Attributes. Chem. Bio. Eng. Reviews 5, 310-326. DOI:10.1002/cben.20170001010.1002/cben.201700010
  22. 22. Kruger, J.E., Lineback, D.R. & Stauffer, C.E., Chemists, A.A. of C. (1987). Enzymes and Their Role in Cereal Technology. American Association of Cereal Chemists. Retrieved from https://books.google.pl/books?id=IEtjQgAACAAJ
  23. 23. Esslinger, H.M. (2015). Handbook of Brewing. Climate Change 2013 - The Physical Science Basis (Vol. 1). DOI: 10.1017/CBO9781107415324.004.10.1017/CBO9781107415324.004
  24. 24. Muller, R. (1991). the Effects of Mashing Temperature and Mash Thickness on Wort Carbohydrate Composition. J. Instit. Brewing, 97(2), 85-92. DOI: 10.1002/j.2050-0416.1991.tb01055.x.10.1002/j.2050-0416.1991.tb01055.x
  25. 25. Brányik, T., Silva, D.P., Baszczyňski, M., Lehnert, R., Almeida, E. & Silva, J. B. (2012). A review of methods of low alcohol and alcohol-free beer production. J. Food Eng., 108(4), 493-506. DOI: 10.1016/j.jfoodeng.2011.09.020.10.1016/j.jfoodeng.2011.09.020
  26. 26. Ivanov, K., Petelkov, I., Shopska, V., Denkova, R., Gochev, V. & Kostov, G. (2016). Investigation of mashing regimes for low-alcohol beer production. J. Instit.Brewing, 122(3), 508-516.DOI: 10.1002/jib.351.10.1002/jib.351
  27. 27. Khan, A.W., Lamb, K.A. & Schneider, H. (1988). Recovery of Fermentable Sugars from the Brewers Spent Grains by the Use of Fungal Enzymes. Process Biochem., 23(6), 172-175.
  28. 28. Macheiner, D., Adamitsch, B.F., Karner, F. & Hampel, W.A. (2003). Pretreatment and Hydrolysis of Brewer’s Spent Grains. Eng. Life Sci., 3(10), 401-405. DOI: 10.1002/elsc.200301831.10.1002/elsc.200301831
  29. 29. Schur, F. (1983). Ein neues verfharen herstellung von alkoholfreien bier. Proceedings of the 19th Eur. Brewery Convent. Congress, 353-360.
  30. 30. Perpète, P., Collin, S. (1999). Contribution of 3-methylthiopropionaldehyde to the worty flavor of Alcohol-free beers. J. Agr. Food Chem. 47(6), 2374-2378. DOI: 10.1021/jf9811323.10.1021/jf9811323
  31. 31. Attenborough, W.M. (1988). Evaluation of processes for the production of low- and non-alcohol beer. Ferment. 2(2), 40-44.
  32. 32. Kobayashi, F. (2016). Inactivation of beer yeast by microbubbled carbon dioxide at low pressure and quality evaluation of the treated beer. In W. Salazar (Ed.), In beer: Production, consumption and health effects (p. 257). Nova science publishers.
  33. 33. Verstrepen, K. J., Derdelinckx, G., Verachtert, H., Delvaux, F. R. (2003). Yeast flocculation: What brewers should know. Appl. Microbiol. Biotechnol. 61(3), 197-205. DOI: 10.1007/s00253-002-1200-8.10.1007/s00253-002-1200-8
  34. 34. Lebeau, T., Jouenne, T. & Junter, G.A. (1998). Diffusion of sugars and alcohols through composite membrane structures immobilizing viable yeast cells. Enzyme Microbiol. Technol. 22(6), 434-438. DOI: 10.1016/S0141-0229(97)00214-7.10.1016/S0141-0229(97)00214-7
  35. 35. Strejc, J., Siristova, L., Karabin, M., Almeida e Silva, J. B. & Branyik, T. (2013). Production of alcohol-free beer with elevated amounts of flavouring compounds using lager yeast mutants. J. Instit. Brewing. 119(3), 149-155. DOI: 10.1002/jib.72.10.1002/jib.72
  36. 36. Klewicka, E. (2008). Bakterie kwasu octowego. In Z. Libudzisz (Ed.), Mikrobiologia techniczna. Mikroorganizmy w biotechnologii, ochronie środowiska i produkcji żywności T.2 (pp. 59-73). Warszawa: Wydaw. Nauk. PWN.
  37. 37. Pilkington, P.H., Margaritis, A., Mensour, N.A. & Russell, I. (1998). Fundamentals of immobilised yeast cells for continuous beer fermentation: A review. J. Instit. Brewing. 104(1), 19-31. DOI: 10.1002/j.2050-0416.1998.tb00970.x10.1002/j.2050-0416.1998.tb00970.x
  38. 38. Tuszyński, T. (2008). Immobilizacja drobnoustrojów. Laboratorium 10, 34-38.
  39. 39. Brányik, T., Vicente, A., Oliveira, R. & Teixeira, J. (2004). Physicochemical surface properties of brewing yeast influencing their immobilization onto spent grains in a continuous reactor. Biotechnol. Bioeng. 88(1), 84-93. DOI: 10.1002/bit.20217.10.1002/bit.2021715389484
  40. 40. Trusek-Holownia, A. (2008). Wastewater treatment in a microbial membrane bioreactor - a model of the process. Desalination 221(1-3), 552-558. DOI: 10.1016/j.desal.2007.01.116 .10.1016/j.desal.2007.01.116
  41. 41. Bony, M., Bony, M., Thines-sempoux, D., Thines-Sempoux, D., Barre, P., Barre, P. & Blondin, B. (1997). Localization and Cell Surface Anchoring of the. Microbiology 179(15), 4929-36.10.1128/jb.179.15.4929-4936.1997
  42. 42. Verbelen, P.J., De Schutter, D.P., Delvaux, F., Verstrepen, K.J. & Delvaux, F.R. (2006). Immobilized yeast cell systems for continuous fermentation applications. Biotechnol. Letters 28(19), 1515-1525. DOI: 10.1007/s10529-006-9132-5.10.1007/s10529-006-9132-516937245
  43. 43. Naydenova, V., Badova, M., Vassilev, S., Iliev, V., Kaneva, M. & Kostov, G. (2014). Encapsulation of brewing yeast in alginate/chitosan matrix: Lab scale optimization of lager beer fermentation. Biotechnol. Biotechnolog. Equipment. 28(2), 277-284. DOI: 10.1080/13102818.2014.910373.10.1080/13102818.2014.910373443384726019512
  44. 44. Mensour, N.A., Margaritis, A., Briens, C.L., Pilkington, H. & Russell, I. (1997). New Developments in the Brewing Industry Using Inmobilised Yeast Cell Bioreactor Systems. J. Inst. Brewing. 103(6), 363-370. DOI: 10.1002/j.2050-0416.1997.tb00965.x.10.1002/j.2050-0416.1997.tb00965.x
  45. 45. Van Dieren, B. (1995). Yeast metabolism and the production of alcohol-free beer. In Immobilized Yeast Applications in the Brewery Industry (pp. 66-76). Espoo, Finland: Hans Carl Getranke-Fachverlag.
  46. 46. Inez, B., Figueiredo, C., Fontes, A., Patrick, P., Pimenta, D.S. & Souza, C. De. (2017). Crossing Techniques Using Cachaça ( Brazilian Spirit ) Yeasts 83(20), 1-17.10.1128/AEM.01582-17562699328778887
  47. 47. Puerari, C., Strejc, J., Souza, A.C., Karabi n, M., Schwan, R.F. & Bra¡nyik, T. (2016). Optimization of alcohol-free beer production by lager and cachaca yeast strains using response surface methodology. J. Inst. Brewing 122(1), 69-75. DOI: 10.1002/jib.30610.1002/jib.306
  48. 48. Navrátil, M., Dömény, Z., Šturdík, E., Šmogrovičová, D. & Gemeiner, P. (2002). Production of non-alcoholic beer using free and immobilized cells of Saccharomyces cerevisiae deficient in the tricarboxylic acid cycle. Biotechnol. Appl. Biochem. 35(2), 133. DOI: 10.1042/BA20010057.10.1042/BA2001005711916455
  49. 49. Mortazavian, A.M., Razavi, S.H., Mousavi, S.M., Malganji, S. & Sohrabvandi, S. (2014). The effect of Saccharomyces strain and fermentation conditions on quality prameters of non-alcoholic beer. J. Paramed. Sci. 5(3), 21-26.
  50. 50. De Francesco, G., Turchetti, B., Sileoni, V., Marconi, O. & Perretti, G. (2015). Screening of new strains of Saccharomycodes ludwigii and Zygosaccharomyces rouxii to produce low-alcohol beer. J. Instit. Brewing 121(1), 113-121. DOI: 10.1002/jib.185.10.1002/jib.185
  51. 51. Baranowski, K., Salamon, A., Michałowska, D., Baca, E. & Kraśna, D. (2002). Sposób wytwarzania piwa o małej zawartości alkoholu etylowego oraz szczepy drożdży do wytwarzania piwa o małej zawartości alkoholu etylowego. Patent No. 98846, Poland.
  52. 52. Mohammadi, A., Razavi, S.H., Mousavi, S.M. & Rezaei, K. (2011). A Comparison between sugar consumption and ethanol production in wort by immobilized Saccharomyces cerevisiae, Saccharomyces ludwigii and Saccharomyces rouxii on brewer’s spent grain. Brazil. J. Microbiol. 42(2), 605-615. DOI: 10.1590/S1517-83822011000200025.10.1590/S1517-83822011000200025
  53. 53. Gibson, B., Geertman, J.M.A., Hittinger, C.T., Krogerus, K., Libkind, D., Louis, E.J. & Sampaio, J.P. (2017). New yeasts-new brews: Modern approaches to brewing yeast design and development. FEMS Yeast Res. 17(4), 1-13. DOI: 10.1093/femsyr/fox038.10.1093/femsyr/038
  54. 54. Lide, D.R., Baysinger, G., Berger, L.I., Goldberg, R. N., Kehiaian, H.V, Kuchitsu, K. & Zwillinger, D. (2004). CRC Handbook of Chemistry and Physics. CRC Press.
  55. 55. Huige, N.J., Sanchez, G.W. & Leidger, A.R. (1990). Process for Preparing a Nonalcoholic (Less the 0.5 Volume Percent Alcohol) Malt Beverage. Patent No.4970082A, USA.
  56. 56. Caluwaerts, H.J.J. (1995). Process for the manufacture of an alcohol-free beer having the organoleptic properties of a lager type pale beer. Patent No. 5384135 USA.10.1016/0141-0229(96)81133-1
  57. 57. Sohrabvandi, S., Mousavi, S.M., Razavi, S.H., Mortazavian, A.M. & Rezaei, K. (2010). Alcohol-free beer: Methods of production, sensorial defects, and healthful effects. Food Rev. Internat. 26(4), 335-352. DOI: 10.1080/87559129.2010.496022.10.1080/87559129.2010.496022
  58. 58. Craig, A.J.M. (1991). Counter-current gas-liquid contacting device. Patent No. 4995945A, USA.
  59. 59. Wright, A.J. & Pyle, D.L. (1996). An investigation into the use of the spinning cone column for in situ ethanol removal from a yeast broth. Proc. Biochem. 31(7), 651-658. DOI: 10.1016/S0032-9592(96)00017-9.10.1016/S0032-9592(96)00017-9
  60. 60. Huerta-Pérez, F., & Pérez-Correa, J.R. (2018). Optimizing ethanol recovery in a spinning cone column. J. Taiwan Inst. Chem. Eng. 83, 1-9. DOI: 10.1016/j.jtice.2017.11.030.10.1016/j.jtice.2017.11.030
  61. 61. Moreira da Silva, P. & De Wit, B. (2008). Spinning cone column distillation - innovative technology for beer dealcoholisation. Cerevisia 33, 91-95.
  62. 62. Leskosek, I.J. & Mitrovic, M. (1994). Optimization of beer dialysis with cuprophane membranes. J. Inst. Brew., 100, 287-292.10.1002/j.2050-0416.1994.tb00826.x
  63. 63. Moonen, H. & Niefind, H.J. (1982). Alcohol reduction in beer by means of dialysis. Desalination 41(3), 327-335. DOI: 10.1016/S0011-9164(00)88733-0.10.1016/S0011-9164(00)88733-0
  64. 64. Leskošek, I., Mitrović, M. & Nedović, V. (1995). Factors influencing alcohol and extract separation in beer dialysis. World J Microbiol. Biotechnol. 11(5), 512-514. DOI: 10.1007/BF00286364.10.1007/BF00286364
  65. 65. Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B. & Moulin, P. (2009). Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 43(9), 2317-2348. DOI: 10.1016/S0011-9164(03)00373-4.10.1016/S0011-9164(03)00373-4
  66. 66. Noworyta, A., Koziol, T. & Trusek-Holownia, A. (2003). A system for cleaning condensates containing ammonium nitrate by the reverse osmosis method. Desalination 156 (1-3), 397-402. DOI: 10.1016/j.desal.2015.12.011.10.1016/j.desal.2015.12.011
  67. 67. Ali, W., Rehman, W.U., Younas, M., Ahmad, M.I. & Gul, S. (2015). Reverse osmosis as one-step wastewater treatment : a case study on groundwater pollution. Pol. J. Chem. Technol. 17(4), 42-48. DOI: 10.1515/pjct-2015-0067.10.1515/pjct-2015-0067
  68. 68. Jastřembská, K., Jiránková, H. & Mikulášek, P. (2017). Dealcoholisation of standard solutions by reverse osmosis and diafiltration. Desalin. Water Treat. 75, 357-362. DOI: 10.5004/dwt.2017.20544.10.5004/dwt.2017.20544
  69. 69. Catarino, M., Mendes, A., Madeira, L.M. & Ferreira, A. (2007). Alcohol removal from beer by reverse osmosis. Separ. Sci. Technol. 42(13), 3011-3027. DOI: 10.1080/01496390701560223.10.1080/01496390701560223
  70. 70. Gnekow, B.R. (1991). Low and non-alcoholic beverages produced by simultaneous double reverse osmosis. Patent No.4999209A, USA.
  71. 71. Criscuoli, A., Drioli, E., Capuano, A., Memoli, B. & Andreucci, V.E. (2002). Human plasma ultrafiltrate purification by membrane distillation: process optimisation and evaluation of its possible application on-line. Desalination 147, 147-148. DOI: 10.1016/S0011-9164(02)00602-1.10.1016/S0011-9164(02)00602-1
  72. 72. Ali, A., Quist-Jensen, C.A., Drioli, E. & Macedonio F.(2018). Evaluation of integrated microfiltration and membrane distillation/crystallization processes for produced water treatment, Desalination 434, 161-168. DOI: 10.1016/j.desal.2017.11.035.10.1016/j.desal.2017.11.035
  73. 73. Wang, Q., Li, N., Bolto, B., Hoang, M. & Xie, Z. (2016). Desalination by pervaporation: A review. Desalination 387, 46-60. DOI: 10.1016/j.desal.2016.02.036.10.1016/j.desal.2016.02.036
  74. 74. Feng, X. & Huang, R.Y.M. (1997). Liquid Separation by Membrane Pervaporation: A Review. Industr. Eng. Chem. Res.36(4), 1048-1066. DOI: 10.1021/ie960189g.10.1021/ie960189g
  75. 75. Kaminski, W., Marszalek, J. & Tomczak, E. (2018). Water desalination by pervaporation - Comparison of energy consumption. Desalination 433, 89-93. DOI: 10.1016/j.desal.2018.01.014.10.1016/j.desal.2018.01.014
  76. 76. Smitha, B., Suhanya, D., Sridhar, S. & Ramakrishna, M. (2004). Separation of organic-organic mixtures by pervaporation- A review. J. Membr. Sci. 241(1), 1-21. DOI: 10.1016/j.memsci.2004.03.042.10.1016/j.memsci.2004.03.042
  77. 77. Noworyta, A., Trusek-Holownia, A., Mielczarski, S. & Kubasiewicz-Ponitka, M. (2006). An integrated pervaporationbiodegradation process of phenolic wastewater treatment. Desalination 198(1-3), 191-197. DOI: 10.1016/j.desal.2006.01.025.10.1016/j.desal.2006.01.025
  78. 78. Mangindaan, D., Khoiruddin, K. & Wenten, I.G. (2018). Beverage dealcoholization processes: Past, present, and future. Trends Food Sci. Technol. 71, 36-45. DOI: 10.1016/j. tifs.2017.10.018.10.1016/j.tifs.2017.10.018
  79. 79. Olmo, Á. Del, Blanco, C.A., Palacio, L., Prádanos, P. & Hernández, A. (2014). Pervaporation methodology for improving alcohol-free beer quality through aroma recovery. J. Food Eng.133, 1-8. DOI: 10.1016/j.jfoodeng.2014.02.014.10.1016/j.jfoodeng.2014.02.014
  80. 80. Paz, A.I., Blanco, C.A., Andrés-Iglesias, C., Palacio, L., Prádanos, P. & Hernández, A. (2017). Aroma recovery of beer flavors by pervaporation through polydimethylsiloxane membranes. J. Food Proc. Eng.40(6). DOI: 10.1111/jfpe.12556.10.1111/jfpe.12556
  81. 81. Onsekizoglu, P. (2012). Membrane Distillation: Principle, Advances, Limitations and Future Prospects in Food Industry, Distillation - Advances from Modeling to Applications, Sina Zereshki (Ed.), ISBN: 978-953- 51-0428-5.10.5772/37625
  82. 82. Varavuth, S., Jiraratananon, R. & Atchariyawut, S. (2009). Experimental study on dealcoholization of wine by osmotic distillation process. Separ. Purif. Technol. 66(2), 313-321. DOI: 10.1016/j.seppur.2008.12.011.10.1016/j.seppur.2008.12.011
  83. 83. Barancewicz, M. & Gryta, M. (2012). Ethanol production in a bioreactor with an integrated membrane distillation module. Chem. Papers 66(2), 85-91. DOI: 10.2478/s11696-011-0088-0.10.2478/s11696-011-0088-0
  84. 84. Gryta, M. (2018). The long-term studies of osmotic membrane. Chem. Pap. 72, 99-107. DOI: 10.1007/s11696-017-0261-1.10.1007/s11696-017-0261-1576061529367800
  85. 85. Kujawa, J., Guillen-Burrieza, E., Arafat, H.A., Kurzawa, M., Wolan, A., Kujawski, W. (2015). Raw juice concentration by osmotic membrane distillation process with hydrophobic polymeric membranes. Food Bioproc. Technol. 8 (10), 2146-2158, DOI: 10.1007/s11947-015-1570-4.10.1007/s11947-015-1570-4
  86. 86. Drioli, E. (2017), Membrane Distillation, MDPI, Basel, Switzerland, ISBN 978-3-03842-460-4.
  87. 87. Purwasasmita, M., Kurnia, D., Mandias, F.C., Khoiruddin, Wenten, I. G. (2015). Beer dealcoholization using non-porous membrane distillation. Food Bioprod. Proces. 94, 180-186. DOI: 10.1016/j.fbp.2015.03.001.10.1016/j.fbp.2015.03.001
  88. 88. Liguori, L., De Francesco, G., Russo, P., Perretti, G., Albanese, D. & Di Matteo, M. (2015). Production and characterization of alcohol-free beer by membrane process. Food Bioprod. Proces. 94, 158-168. DOI: 10.1016/j.fbp.2015.03.003.10.1016/j.fbp.2015.03.003
  89. 89. Ritchie, H. & Roser, M. (2018). Alcohol consumption. Retrieved May 29, 2018, from https://ourworldindata.org/alcohol-consumption
  90. 90. Wójcik, H. (2018). Wzrasta popularność piwa bezalkoholowego. To najszybciej rosnący segment rynku w Polsce. Retrieved May 29, 2018, from https://www.wiadomoscihandlowe.pl/artykuly/wzrasta-popularnosc-piwa-bezalkoholowego-to-najszy,46382
  91. 91. Riu-Aumatell, M., Miró, P., Serra-Cayuela, A., Buxaderas, S. & López-Tamames, E. (2014). Assessment of the aroma profiles of low-alcohol beers using HS-SPME-GC-MS. Food Resear. Internat. 57, 196-202. DOI: 10.1016/j.foodres.2014.01.016.10.1016/j.foodres.2014.01.016
Language: English
Page range: 32 - 38
Published on: Jan 11, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Mateusz Jackowski, Anna Trusek, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.