Have a personal or library account? Click to login
Effects of processing parameters on the properties of amphiphilic block copolymer micelles prepared by supercritical carbon dioxide evaporation method Cover

Effects of processing parameters on the properties of amphiphilic block copolymer micelles prepared by supercritical carbon dioxide evaporation method

Open Access
|Apr 2018

References

  1. 1. Yang, X.Y., Zhang, X.Y., Liu, Z.F., Ma, Y.F., Huang, Y. & Chen, Y. (2008). High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Phys. Chem. C 112, 17554–17558. DOI: 10.1021/jp806751k.10.1021/jp806751k
  2. 2. Chen, M.X., Li, B.K., Yin, D.K., Liang, J., Li, S.S. & Peng, D.Y. (2014). Layer-by-layer Assembly of Chitosan Stabilized Multilayered Liposomes for Paclitaxel Delivery. Carbohydr. Polym. 111, 298–304. DOI: 10.1016/j.carbpol.2014.04.038.10.1016/j.carbpol.2014.04.038
  3. 3. Sugahara, K.N., Teesalu, T., Karmali, P.P., Kotamraju, V.R., Agemy, L., Greenwald, D.R. & Ruoslahti, E. (2010). Coadministration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs. Science 328, 1031–1035. DOI: 10.1126/science.1183057.10.1126/.1183057
  4. 4. Ferrari, M. (2005). Cancer Nanotechnology: Opportunities and Challenges. Nat. Rev. Cancer 5, 161–171. DOI: 10.1038/nrc1566.10.1038/nrc1566
  5. 5. Jin, J., Lee, W.S., Joo, K.M., Maiti, K.K., Biswas, G., Kim, W., Kim, K.T., Lee, S.J., Kim, K.H., Nam, D.H. & Chung, S.K. (2011). Preparation of Blood-brain Barrier-permeable Paclitaxel-carrier Conjugate and Its Chemotherapeutic Activity in The Mouse Glioblastoma Model. Med. Chem. Comm. 2, 270–273. DOI: 10.1039/c0md00235f.10.1039/c0md00235f
  6. 6. Brannon-Peppas, L. & Blanchette, J.O. (2004). Nanoparticle and Targeted Systems for Cancer Therapy. Adv. Drug. Deliv. Rev. 64, 206–212. DOI: 10.1016/j.addr.2012.09.033.10.1016/j.addr.2012.09.033
  7. 7. Torchilin, V.P. (2007). Micellar nanocarriers: Pharmaceutical Perspectives. Pharm. Res. 24, 1–16. DOI: 10.1007/s11095-006-9132-0.10.1007/s11095-006-9132-0
  8. 8. Kataoka, K., Harada, A. & Nagasaki, Y. (2001). Block Copolymer Micelles for Drug Delivery: Design, Characterization and Biological Significance. Adv. Drug Deliv. Rev. 47, 113–131. DOI: 10.1016/S0169-409X(00)00124-1.10.1016/S0169-409X(00)00124-1
  9. 9. Yang, Y., Pan, D., Luo, K., Li, L. & Gu, Z. (2013). Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials 34, 8430–8443. DOI: 10.1016/j.biomaterials.2013.07.037.10.1016/j.biomaterials.2013.07.037
  10. 10. Li, N., Li, N., Yi, Q., Luo, K., Guo, C., Pan, D. & Gu, Z. (2014). Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent, Biomaterials, 35, 9529–9545. DOI: 10.1016/j.biomaterials.2014.07.059.10.1016/j.biomaterials.2014.07.059
  11. 11. Li, N., Guo, C., Duan, Z., Yu, L., Luo, K., Lu, J. & Gu, Z. (2016). A stimuli-responsive Janus peptide dendron-drug conjugate as a safe and nanoscale drug delivery vehicle for breast cancer therapy. J. Mater. Chem. B, 4, 3760–3769. DOI: 10.1039/c6tb00688d.10.1039/C6TB00688D
  12. 12. Li, N., Cai, H., Jiang, L., Hu, J., Bains, A., Hu, J., Gong, Q., Luo, K. & Gu, Z. (2017). Enzyme-Sensitive and Amphiphilic PEGylated Dendrimer-Paclitaxel Prodrug-Based Nanoparticles for Enhanced Stability and Anticancer Efficacy ACS Appl. Mater. Inter. 9, 6865–6877. DOI: 10.1021/acsami.6b15505.10.1021/acsami.6b15505
  13. 13. Duan, Z.Y., Zhang, Y.H., Zhu, H.Y., Sun, L., Cai, H., Li, B.J., Gong, Q.Y., Gu, Z. W. & Luo, K. (2017). Stimuli-Sensitive Biodegradable and Amphiphilic Block Copolymer-Gemcitabine Conjugates Self-Assemble into a Nanoscale Vehicle for Cancer Therapy, ACS Appl. Mater. Inter. 9, 3474–3486. DOI: 10.1021/acsami.6b15232.10.1021/acsami.6b15232
  14. 14. Torchilin, V.P. (2001). Structure and Design of Polymeric Surfactant-based Drug Delivery Systems, J. Control. Release 73, 137–172. DOI: 10.1016/S0168-3659(01)00299-1.10.1016/S0168-3659(01)00299-1
  15. 15. Riess, G. (2003). Micellization of Block Copolymers. Prog. Polym. Sci. 28, 1107–1170. DOI: 10.1016/S0079-6700(03)00015-7.10.1016/S0079-6700(03)00015-7
  16. 16. Tucker, B.S. & Sumerlin, B.S. (2014). Poly(N-(2-hydroxypropyl) methacrylamide)-based Nanotherapeutics. Polym. Chem. 5, 1566–1572. DOI: 10.1039/C3PY01279D.10.1039/C3PY01279
  17. 17. Gaucher, G., Marchessault, R.H. & Leroux, J.C. (2010). Polyester-based Micelles and Nanoparticles for the Parenteral Delivery of Taxanes. J. Control. Release 143, 2–12. DOI: 10.1016/j.jconrel.2009.11.012.10.1016/j.jconrel.2009.11.012
  18. 18. Odonnell, P.B. & McGinity, J.W. (1997). Preparation of Microspheres by the Solvent Evaporation Technique. Adv. Drug. Deliv. Rev. 28, 25–42. DOI: 10.1016/S0169-409X(97)00049-5.10.1016/S0169-409X(97)00049-5
  19. 19. Blackburn, J.M., Long, D.P., Cabanas, A. & Watkins, J.J. (2001). Deposition of Conformal Copper and Nickel Films From Supercritical Carbon Dioxide. Science 294, 141–145. DOI: 10.1126/science.1064148.10.1126/.1064148
  20. 20. Darr, J.A. & Poliakoff, M. (1999). New Directions in Inorganic and Metal-organic Coordination Chemistry in Supercritical Fluids. Chem. Rev. 99, 495–541. DOI: 10.1021/cr970036i.10.1021/cr970036i
  21. 21. Pham, Q.L., Nguyen, V.H., Haldorai, Y. & Shim, J.J. (2013). Polymerization of Vinyl Pivalate in Supercritical Carbon Dioxide and the Saponification for the Preparation of Syndiotacticity-rich Poly(vinyl alcohol). Korean J. Chem. Eng. 30, 1153–1161. DOI: 10.1007/s11814-013-0019-6.10.1007/s11814-013-0019-6
  22. 22. Kendall, J.L., Canelas, D.A., Young. J.L. & DeSimone, J.M. (1999). Polymerizations in Supercritical Carbon Dioxide. Chem. Rev. 99, 543–563. DOI: 10.1021/cr9700336.10.1021/cr9700336
  23. 23. Meng, Y., Su, F.H. & Chen, Y.Z. (2015). A Novel Nanomaterial of Graphene Oxide Dotted with Ni Nanoparticles Produced by Supercritical CO2-Assisted Deposition for Reducing Friction and Wear. ACS Appl. Mater. Interf. 7, 11604–11612. DOI: 10.1021/acsami.5b02650.10.1021/acsami.5b02650
  24. 24. Islam, M.N., Haldorai, Y., Nguyen, V.H. & Shim, J.J. (2014). Synthesis of Poly(vinyl pivalate) by Atom Transfer Radical Polymerization in Supercritical Carbon Dioxide. Eur. Polym. J. 61, 93–104. DOI: 10.1016/j.eurpolymj.2014.09.003.10.1016/j.eurpolymj.2014.09.003
  25. 25. Baldino, L., Sarno, M., Cardea, S., Irusta, S., Ciambelli, P., Santamaria, J. & Reverchon, E. (2015). Formation of Cellulose Acetate-Graphene Oxide Nanocomposites by Supercritical CO2 Assisted Phase Inversion. Ind. Eng. Chem. Res. 54, 8147–8156. DOI: 10.1021/acs.iecr.5b01452.10.1021/acs.iecr.5b01452
  26. 26. Nguyen, V.H., Haldorai, Y., Pham, Q.L. & Shim, J.J. (2011). Supercritical Fluid Mediated Synthesis of Poly(2-hydroxyethyl methacrylate)/Fe3O4 Hybrid Nanocomposite. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 176, 773-778. DOI: 10.1016/j.mseb.2011.02.020.10.1016/j.mseb.2011.02.020
  27. 27. Jiao, Z., Liu, N. & Chen, Z.M. (2012). Selection Suitable Solvents to Prepare Paclitaxel-loaded Micelles by Solvent Evaporation Method. Pharm. Dev. Technol. 17, 164–169. DOI: 10.3109/10837450.2010.529146.10.3109/10837450.2010.529146
  28. 28. Patel, V.K., Vishwakarma, N.K., Mishra, A.K., Biswas, C.S. & Ray, B. (2012). (S)-2-(ethyl propionate)-(O-ethyl xanthate)- and (S)-2-(Ethyl isobutyrate)-(O-ethyl xanthate)-mediated RAFT Polymerization of Vinyl Acetate. J. Appl. Polym. Sci. 125, 2946–2955. DOI: 10.1002/app.36233.10.1002/app.36233
  29. 29. Chu, H.Y., Liu, N., Wang, X., Jiao, Z. & Chen, Z.M. (2009). Morphology and in vitro Release Kinetics of Drug- -loaded Micelles Based on Well-defined PMPC-b-PBMA Copolymer. Int. J. Pharm. 371, 190–196. DOI: 10.1016/j.ijpharm.2008.12.033.10.1016/j.ijpharm.2008.12.033
  30. 30. Allen, C., Maysinger, D. & Eisenberg, A. (1999). Nano-engineering Block Copolymer Aggregates for Drug Delivery. Coll. Surf. B-Biointerfaces 16, 3–27. DOI: 10.1016/S0927-7765(99)00058-2.10.1016/S0927-7765(99)00058-2
  31. 31. Rapoport, N. (2007). Physical Stimuli-responsive Polymeric Micelles for Anti-cancer Drug Delivery. Prog. Polym. Sci. 32, 962–990. DOI: 10.1016/j.progpolymsci.2007.05.009.10.1016/j.progpolymsci.2007.05.009
  32. 32. Herrmann, J. & Bodmeier, R. (1995). Somatostatin Containing Biodegradable Microspheres Prepared by a Modified Solvent Evaporation Method Based on W/O/W-multiple Emulsions. Int. J. Pharm. 126, 129–138. DOI: 10.1016/0378-5173(95)04106-0.10.1016/0378-5173(95)04106-0
Language: English
Page range: 81 - 86
Published on: Apr 16, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Zhen Jiao, Ziyi Wang, Xiudong Wang, Wenjing Fan, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.