Have a personal or library account? Click to login
Ultrasound-assisted emulsification–microextraction and spectrophotometric determination of cobalt, nickel and copper after optimization based on Box-Behnken design and chemometrics methods Cover

Ultrasound-assisted emulsification–microextraction and spectrophotometric determination of cobalt, nickel and copper after optimization based on Box-Behnken design and chemometrics methods

By: Zohreh Doroudi and  Ali Niazi  
Open Access
|Apr 2018

References

  1. 1. Hedberg, Y., Herting, G. & Wallinder, I.O. (2011). Risks of using membrane filtration for trace metal analysis and assessing the dissolved metal fraction of aqueous media – A study on zinc, copper and nickel. Environ. Pollut. 159(5), 1144–1150. DOI: 10.1016/j.envpol.2011.02.014.10.1016/j.envpol.2011.02.01421367497
  2. 2. Şengil, I.A. & Özacar, M. (2008). Biosorption of Cu(II) from aqueous solutions by mimosa tannin gel. J. Hazard. Mater. 157(2–3), 277–285. DOI: 10.1016/j.jhazmat.2007.12.115.10.1016/j.jhazmat.2007.12.11518289780
  3. 3. Regueiroa, J., Lomparta, M., Garcia-Jaresa, C., Garcia-Monteagudob, J.C. & Celaa, R. (2008). Ultrasound-assisted emulsification–microextraction of emergent contaminants and pesticides in environmental waters. J. Chromatogr. A 1190(1–2), 27–38. DOI: 10.1016/j.chroma.2008.02.091.10.1016/j.chroma.2008.02.09118359033
  4. 4. Feng, J., Qiu, H., Liu, X. & Jiang, Sh. (2013). The development of solid-phase microextraction fibers with metal wires as supporting substrates. TrAC, Trends Anal. Chem. 46, 44–58. DOI: 10.1016/j.trac.2013.01.015.10.1016/j.trac.2013.01.015
  5. 5. Su, Sh., Chen, B., He, M. & Hu, B. (2014). Graphene oxide–silica composite coating hollow fiber solid phase microextraction online coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental water samples. Talanta 123, 1–9. DOI: 10.1016/j.talanta.2014.01.061.10.1016/j.talanta.2014.01.06124725857
  6. 6. Miró, M. & Hansen, E.H. (2013). On-line sample processing involving microextraction techniques as a front-end to atomic spectrometric detection for trace metal assays: A review. Anal. Chim. Acta 782, 1–11. DOI: 10.1016/j.aca.2013.03.019.10.1016/j.aca.2013.03.01923708278
  7. 7. Sereshti, H., Khojeh, V. & Samadi, S. (2011). Optimization of dispersive liquid–liquid microextraction coupled with inductively coupled plasma-optical emission spectrometry with the aid of experimental design for simultaneous determination of heavy metals in natural waters. Talanta 83(3), 885–890. DOI: 10.1016/j.talanta.2010.10.052.10.1016/j.talanta.2010.10.05221147333
  8. 8. Mirzaei, M., Behzadi, M., Mahmoud Abadi, N. & Beizaei, A. (2011). Simultaneous separation/preconcentration of ultra-trace heavy metals in industrial wastewaters by dispersive liquid–liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry. J. Hazard. Mater. 186(2–3), 1739–1743. DOI: 10.1016/j.jhazmat.2010.12.080,10.1016/j.jhazmat.2010.12.08021232852
  9. 9. Stanisz, E., Werner, J. & Zgoła-Grześkowia, A. (2014). Liquid-phase microextraction techniques based on ionic liquids for preconcentration and determination of metals. TrAC, Trends Anal. Chem. 61, 54–66. DOI: 10.1016/j.trac.2014.06.008.10.1016/j.trac.2014.06.008
  10. 10. Deng, Q., Chen, M., Kong, L., Zhao, X., Guo, J. & Wen, X. (2013). Novel coupling of surfactant assisted emulsification dispersive liquid–liquid microextraction with spectrophotometric determination for ultra-trace nickel. Spectrochim. Acta, Part A 104, 64–69. DOI: 10.1016/j.saa.2012.10.080.10.1016/j.saa.2012.10.08023266677
  11. 11. Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F. & Berijani, S., (2006). Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 1116(1–2), 1–9. DOI: 10.1016/j.chroma.2006.03.007.10.1016/j.chroma.2006.03.007
  12. 12. Takagai, Y., Akiyama R. & Igarashi, S. (2006). Powerful preconcentration method for capillary electrophoresis and its application to ultra-trace amounts of polycyclic aromatic hydrocarbons analyses. Anal. Bioanal. Chem. 385(5), 888–894. DOI: 10.1007/s00216-006-0447-9.10.1007/s00216-006-0447-9
  13. 13. Andruch, V., Balogh, I.S., Burdel, M., Kocúrová, L. & Šandrejová, J. (2013). Application of ultrasonic irradiation and vortex agitation in solvent microextraction. TrAC, Trends Anal. Chem. 49, 1–19. DOI: org/10.1016/j.trac.2013.02.006.10.1016/j.trac.2013.02.006
  14. 14. Jiang, H., Qin, Y. & Hu, B. (2008). Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Talanta 74(5), 1160–1165. DOI: 10.1016/j.talanta.2007.08.022.10.1016/j.talanta.2007.08.022
  15. 15. Anthemidis, A.N. & Ioannou, K.I.G. (2011). Sequential injection dispersive liquid–liquid microextraction based on fatty alcohols and poly(etheretherketone)-turnings for metal determination by flame atomic absorption spectrometry. Talanta 84, 1215–1220. DOI: 10.1016/j.talanta.2010.12.017.10.1016/j.talanta.2010.12.017
  16. 16. Sereshti, H., Entezari Heravi, Y. & Samadi, S. (2012). Optimized Ultrasound-Assisted Emulsification Microextraction for Simultaneous Trace Multielement Determination of Heavy Metals in Real Water Samples by ICP-OES. Talanta 97, 235–241. DOI: org/10.1016/j.talanta.2012.04.024.10.1016/j.talanta.2012.04.024
  17. 17. Oliveira, E.P., Yang, L., Sturgeon, R.E., Santelli, R.E., Bezerra, M.A., Willie, S.N. & Capilla, R. (2011). Determination of trace metals in high-salinity petroleum produced formation water by inductively coupled plasma mass spectrometry following on-line analyte separation/preconcentration. J. Anal. At. Spectrom. 26(3), 578–585. DOI: 10.1039/c0ja00108b.10.1039/c0ja00108b
  18. 18. Karim-Nezhad, G., Saghatforoush L. & Ershad, S. (2009). Simultaneous Determination of Copper and Iron in Biological Samples with 1-(2-Pyridylazo)-2-naphthol in Anionic AOT Micellar Solution Using Derivative Spectrophotometry. Asian J. Chem. 21(2), 2565–2572.
  19. 19. Niazi, A. & Yazdanipour, A. (2008). Simultaneous spectrophotometric determination of cobalt, copper and nickel using 1-(2-thiazolylazo)-2-naphthol by chemometrics methods. Chin. Chem. Lett. 19(7), 860–864. DOI: 10.1016/j.cclet.2008.04.047.10.1016/j.cclet.2008.04.047
  20. 20. Saavedra, R., Soto, C., Gómez, R. & Muñoz, A. (2013). Determination of lead(II) by thermal lens spectroscopy (TLS) using 2-(2′-thiazolylazo)-p-cresol (TAC) as chromophore reagent. Microchem. J. 110, 308–313. DOI: 10.1016/j.microc.2013.04.019.10.1016/j.microc.2013.04.019
  21. 21. Niazi, A. & Azizi, A. (2008). Orthogonal Signal Correction – Partial Least Squares Method for Simultaneous Spectrophotometric Determination of Nickel, Cobalt, and Zinc. Turk. J. Chem. 32, 217–228.
  22. 22. Hejazi, L., Mohammadi, D.E., Yamini, Y. & Brereton, R.G. (2004). Solid-phase extraction and simultaneous spectrophotometric determination of trace amounts of Co, Ni and Cu using partial least squares regression. Talanta 62(1), 185–191 DOI: 10.1016/S0039-9140(03)00412-0.10.1016/S0039-9140(03)00412-0
  23. 23. Niazi, A., Azizi A. & Ramezani, M. (2008). Simultaneous spectrophotometric determination of mercury and palladium with Thio-Michler’s Ketone using partial least squares regression and orthogonal signal correction. Spectrochim. Acta, Part A 71 (3), 1172–1177. DOI: 10.1016/j.saa.2008.03.017.10.1016/j.saa.2008.03.017
  24. 24. Niazi, A. (2006). Simultaneous Determination of Uranium and Thorium Using Partial Least Squares Regression and Orthogonal Signal Correction. J. Braz. Chem. Soc. 17, 1020–1026. DOI: org/10.1590/S0103-50532006000500029.10.1590/S0103-50532006000500029
  25. 25. Tarighat, M.A. & Afkhami, A. (2012). Spectrophotometric Determination of Cu(II), Co(II) and Ni(II) using Ratio Spectra Continuous Wavelet Transformation in some Food and Environmental Samples. J. Braz. Chem. Soc. 23, 1312–1319. DOI: org/10.1590/S0103-50532012000700016.10.1590/S0103-50532012000700016
  26. 26. Leardi, R. (2001). Genetic algorithms in chemometrics and chemistry: a review. J. Chemom. 15, 559–569. DOI: 10.1002/cem.651.10.1002/cem.651
  27. 27. Ghasemi, J., Niazi A. & Leardi, R. (2003). Genetic-algorithm-based wavelength selection in multicomponent spectrophotometric determination by PLS: application on copper and zinc mixture. Talanta 59(2), 311–317. DOI:10.1016/S0039-9140(02)00505-2.10.1016/S0039-9140(02)00505-2
  28. 28. Niazi, A., Soufi, A. & Mobarakabadi, M. (2006). Genetic Algorithm Applied to Selection of Wavelength in Partial Least Squares for Simultaneous Spectrophotometric Determination of Nitrophenol Isomers. Anal. Lett. 39(11), 2359–2372. DOI: 10.1080/00032710600751016.10.1080/00032710600751016
  29. 29. Ghasemi, J., Ebrahimi, D.M., Hejazi, L., Leardi R. & Niazi, A. (2007). Simultaneous kinetic-spectrophotometric determination of sulfide and sulfite by partial least squares and genetic algorithm variable selection. J. Anal. Chem. 62 (4), 348–354. DOI: 10.1134/S1061934807040090.10.1134/S1061934807040090
  30. 30. Niazi, A. & Leardi, R. (2012). Genetic algorithms in chemometrics. J. Chemom. 26(6), 345–351. DOI: 10.1002/cem.2426.10.1002/cem.2426
  31. 31. Karbakhsh, R. & Sabet, R. (2011). Application of different chemometric tools in QSAR study of azoloadamantanes against influenza A virus. Res. Pharm. Sci. 6(1), 23–33.
  32. 32. Lurie, J.J. (1978). Handbook of Analytical Chemistry. Moscow: Mir Publishers.
  33. 33. Niazi, A., Khorshidi N. & Ghaemmaghami, P. (2015). Microwave-assisted of dispersive liquid–liquid microextraction and spectrophotometric determination of uranium after optimization based on Box–Behnken design and chemometrics methods. Spectrochim. Acta, Part A 135, 69–75. DOI: 0.1016/j.saa.2014.06.148.10.1016/j.saa.2014.06.14825062051
  34. 34. Box, E.P. & Behnken, D. W. (1960). Some new three-level designs for the study of quantitative variables. Technometrics 2, 455–475.10.1080/00401706.1960.10489912
  35. 35. Chopra, S., Patil, G.V. & Motwani, S.K. (2007). Release modulating hydrophilic matrix systems of losartan potassium: optimization of formulation using statistical experimental design. Eur. J. Pharm. Biopharm. 66(1), 73–82. DOI: 10.1016/j.ejpb.2006.09.001.10.1016/j.ejpb.2006.09.001
  36. 36. Yetilmezsoy, K., Demirel, S. & Vanderbei, R.J. (2009). Response surface modeling of Pb (II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J. Hazard. Mater. 171(1–3), 551–562. DOI: 10.1016/j.jhazmat.2009.06.035.10.1016/j.jhazmat.2009.06.035
  37. 37. Shokoufi, N., Shemirani, F. & Assadi, Y. (2007). Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid-liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt. Anal. Chim. Acta 597(2), 349–356. DOI: 10.1016/j.aca.2007.07.009.10.1016/j.aca.2007.07.009
  38. 38. Jaggi, S. & Gupta, U. (2013). Solid phase extraction and preconcentration of Ni(II) using 1-(2-pyridylazo)-2-naphthol) (PAN) modified β-cyclodextrin butanediol diglycidyl ether polymer as a solid phase extractant. Maced. J. Chem. Chem. En. 32(1), 57–67.10.20450/mjcce.2013.86
  39. 39. Gharehbaghi, M., Shemirani, F. & Baghdadi, M. (2008). Dispersive liquid–liquid microextraction and spectrophotometric determination of cobalt in water samples. Int. J. Environ. Anal. Chem. 88, 513–523. DOI: 10.1080/03067310701809128.10.1080/03067310701809128
  40. 40. Shokoufi, N., Shemirani, F. & Memarzadeh, F. (2007). Fiber optic-linear array detection spectrophotometry in combination with cloud point extraction for simultaneous preconcentration and determination of cobalt and nickel. Anal. Chim. Acta 601(2), 204–211. DOI: 10.1016/j.aca.2007.08.042.10.1016/j.aca.2007.08.042
  41. 41. Wold, S., Antii, H., Lindgren, F. & Ohman, J. (1998). Orthogonal signal correction of near-infrared spectra. Chemom. Intell. Lab. Syst. 44, 175–185.10.1016/S0169-7439(98)00109-9
Language: English
Page range: 21 - 28
Published on: Apr 16, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Zohreh Doroudi, Ali Niazi, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.