Have a personal or library account? Click to login
The application of ultrafiltration for separation of glycerol solution fermented by bacteria Cover

The application of ultrafiltration for separation of glycerol solution fermented by bacteria

By: Wirginia Tomczak and  Marek Gryta  
Open Access
|Sep 2013

References

  1. 1. Gungormusler, M., Gonen, C. & Azbar, N. (2011). Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture, Bioprocess Biosyst. Eng. 34, 727-733. DOI: 10.1007/s00449-011-0522-2.10.1007/s00449-011-0522-2
  2. 2. Liu, B., Christiansen, K., Parnas, R., Xu, Z. & Li, B. (2013). Optimizing the production of hydrogen and 1,3-propanediol in anaerobic fermentation of biodiesel glycerol, Int. J. HydrogenEnergy, 383, 196-205. DOI: 10.1016/j.ijhydene.2012.12.135.10.1016/j.ijhydene.2012.12.135
  3. 3. Leja, K., Czaczyk, K. & Myszka, K. (2011). The use of microorganisms in 1,3-Propanediol production, Afr. J. Microbiol. Res., 5 (26), 4652-4658. DOI: 10.5897/AJMR11.847.10.5897/AJMR11.847
  4. 4. Raynaud, C., Sarcabal, P., Meynial-Salles, I., Croux, Ch. & Soucaille, P. (1993). Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum, Appl. Microbiol. Biotechnol., 38, 453-457. DOI: 10.1073_pnas.0734105100.
  5. 5. Barbirato, F., Himmi, El H., Conte, T. & Bories, A. (1998). 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries, Ind. Crops Prod., 7, 281-289. DOI: 10.1016/S0926-6690(97)00059-9.10.1016/S0926-6690(97)00059-9
  6. 6. Metsoviti, M., Zeng, An.P., Koutinas, A.A. & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses, J. Biotechnol., 163, 408-418. DOI: 10.1016/j.jbiotec.2012.11.018.10.1016/j.jbiotec.2012.11.01823220217
  7. 7. Anand, P. & Saxena, R.K. (2012). A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol of growth and 1,3-propanediol production from Citrobacter freundii, New Biotechol., 29, 199-205. DOI: 10.1016/j. nbt.2011.05.010.
  8. 8. Boenigk, R., Bowien, S. & Gottschalk, G. (1993). Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii, Appl. Microbiol. Biotechnol., 38, 453-457. DOI: 10.1007/BF00242936.10.1007/BF00242936
  9. 9. Xiu, Z.L. & Zeng, A.P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol., 78, 917-926. DOI: 10.1007/s00253-008-1387-4.10.1007/s00253-008-1387-418320188
  10. 10. Li, Z., Jiang, B., Hang, D. & Xiu, Z. ( 2009). Aqueous two-phase extraction of 1,3-propanediol from glycerol-based fermentation broths, Sep. Purif. Technol., 66, 472-478. DOI: 10.1016/j.seppur.2009.02.009.10.1016/j.seppur.2009.02.009
  11. 11. Wu, R.C., Ren, H.J. Xu, Y.Z. & Liu, D.H. (2010). The final recover of salt from 1,3-propanadiol fermentation broth. Sep. Purif. Technol, 73, 122-125. DOI: 10.1016/j.seppur.2010.03.013.10.1016/j.seppur.2010.03.013
  12. 12. Annand, P., Saxena, R.K. & Marwah, R.G. (2011). A novel downstream process for 1,3-propanediol from glycerol- -based fermentation, Appl. Microbiol. Biotechnol., 90, 1267-1276. DOI: 10.1007/s00253-011-3161-2.10.1007/s00253-011-3161-221360149
  13. 13. Vellenga, E. & Trägårdh, G. (1998). Nanofiltration of combined salt and sugar solutions: coupling between retentions. Desalination, 120, 211-220. DOI: 10.1016/s0011-9164(98)00219-7.10.1016/S0011-9164(98)00219-7
  14. 14. Schäfer, A.I., Fane, A.G. & Waite, T.D. (Eds.). (2005). Nanofiltration: Principles and applications. Oxford, UK: Elsevier Advanced Technology.
  15. 15. Bonnélye, V., Guey, L. & Del Castillo, J. (2008). UF/ MF as RO pre-treatment: the real benefit, Desalination, 222, 59-65. DOI: 10.1016/j.desal.2007.01.129.10.1016/j.desal.2007.01.129
  16. 16. Blanpain-Avet, P., Migdal, J.F. & Bénézech, T. (2009). Chemical cleaning of a tubular ceramic microfiltration membrane fouled with a whey protein concentrate suspension-Characterization of hydraulic and chemical cleanliness, J. Membr. Sci., 337, 153-174. DOI: 10.1016/j.memsci.2009.03.033.10.1016/j.memsci.2009.03.033
  17. 17. Blanpain-Avet, P., Migdal, J.F. & Bénézech, T. (2004). The effect of multiple fouling and cleaning cycles on a tubular ceramic microfiltration membrane fouled with z whey protein concentrate, Food Bioproducts Process., 82 (C3), 231-234. DOI: 10.1205/fbio.82.3.231.44182.10.1205/fbio.82.3.231.44182
  18. 18. Ogunbiyi, O.O., Miles, N.J. & Hilal, N. (2008). The effects of performance and cleaning cycles of new tubular ceramic microfiltration membrane fouled with a model yeast suspension, Desalination, 220, 273-289. DOI: 10.1016/j.desal.2007.01.034.10.1016/j.desal.2007.01.034
  19. 19. Juang, R.S., Chen, H.L. & Chen, Y.S. (2008). Resistance-in-series analysis in cross-flow ultrafiltration of fermentation broths of Bacillus subtilis culture, J. Membr. Sci., 323, 193-200. DOI: 10.1016/j.memsci.2008.06.032.10.1016/j.memsci.2008.06.032
  20. 20. Markardij, A., Chen, X.D. & Farid, M.M. (1999). Microfiltration and ultrafiltration of milk: some aspects of fouling and cleaning, Food Bioproducts Process., 77, 107-113. DOI: 10.1205/096030899532394.10.1205/096030899532394
  21. 21. Karasu, K., Glennon, N., Lawrence, N.D., Stevens, G.W., O’Connor, J.O., Barber, A.R., Yoshikawa, S. & Kentish, S.E. (2010). A comparison between ceramic and polymeric membrane systems for casein concentrate manufacture, Int. J. Dairy Technol., 63 (2), 284-289. DOI: 10.1111/j.1471-0307.2010.00582.x.10.1111/j.1471-0307.2010.00582.x
  22. 22. Hwang, K.J., Wang, T.T., Iritani, E. & Katagiri, N. (2010). Effect of gel particle softness on the performance of cross-flow microfiltration, J. Membr. Sci., 35, 130-137. DOI: 10.1016/j. memsci.2010.08.043.
  23. 23. Kazemimoghadam, M. & Mohammadi, T. (2007). Chemical cleaning of ultrafiltration membranes in the milk industry, Desalination, 204, 213-218. DOI: 10.1016/j.desal.2006.04.030.10.1016/j.desal.2006.04.030
  24. 24. Blanpain-Avet, P., Migdal, J.F. & Bénézech, T. (2004). The effect of multiple fouling and cleaning cycles on a tubular ceramic microfiltration membrane fouled with a whey protein concentrate. Membrane performance and cleaning efficiency, Food Bioproducts Process, 82 (C3), 231-243. DOI: 10.1205/ fbio.82.3.231.44182.10.1205/fbio.82.3.231.44182
  25. 25. Cabero, M.L., Riera, F.A. & Alvarez, R. (1999). Rinsing of ultrafiltration ceramic membranes fouled with whey proteins: effects on cleaning procedures, J. Membr. Sci. 154, 239-250. DOI: 10.1016/S0376-7388(98)00294-4.10.1016/S0376-7388(98)00294-4
  26. 26. Bachin, P., Aimar, P. & Field, R.W. (2006). Critical and sustainable fluxes: Theory, experiments and applications, J. Membr. Sci., 281, 42-69. DOI: 10.1016/j.memsci.2006.04.014.10.1016/j.memsci.2006.04.014
  27. 27. Nigam, M.O., Bansal, B. & Chen, X.D. (2008). Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes, Desalination, 218, 313-322. DOI: 10.1016/j. desal.2007.02.027.
  28. 28. Madaeni, S.S. & Mansourpanah, Y. (2004). Chemical cleaning of reverse osmosis membranes fouled by whey, Desalination, 161, 13-24. DOI: 10.1016/S0011-9164(04)90036-7. 10.1016/S0011-9164(04)90036-7
Language: English
Page range: 115 - 120
Published on: Sep 20, 2013
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Wirginia Tomczak, Marek Gryta, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons License.