References
- Adam, M., Wessel, M., & Benlian, A. (2021). AI-based chatbots in customer service and their effects on user compliance. Electronic Markets, 31(2), 427–445.
- Araujo, T. (2018). Living up to the chatbot hype: The influence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. Computers in Human Behavior, 85, 183–189.
- Bhowmik, A., Sannigrahi, M., Chowdhury, D., Dwivedi, A. D., & Rao Mukkamala, R. (2022). DBNex: Deep Belief Network and Explainable AI based Financial Fraud Detection. In 2022 IEEE International Conference on Big Data (pp. 3033–3042). IEEE.
- Bigman, Y. E., Yam, K. C., Marciano, D., Reynolds, S. J., & Gray, K. (2021). The threat of racial and economic inequality increases preference for algorithm decision-making. Computers in Human Behavior, 122, 106859.
- Biswas, B., Sengupta, P., Kumar, A., Delen, D., & Gupta, S. (2022). A critical assessment of consumer reviews: A hybrid NLP-based methodology. Decision Support Systems, 159, 113799.
- Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., … & Amodei, D. (2020). Language models are few-shot learners. In Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS).
- Chang, T., & Morales, V. (2025). Responsible AI in healthcare: A bibliometric analysis of ethical and operational issues. Journal of Service Management, 37(1), 49–66.
- Chung, M., Ko, E., Joung, H., & Kim, S. J. (2020). Chatbot e-service and customer satisfaction regarding luxury brands. Journal of Business Research, 120, 74–85.
- Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT) (pp. 4171–4186).
- Doshi-Velez, F. (2021). The present and future of AI. Harvard John A. Paulson School of Engineering and Applied Sciences.
- Espina-Romero, L., Noroño Sánchez, J. G., Gutiérrez Hurtado, H., Dworaczek Conde, H., Solier Castro, Y., Cervera Cajo, L. E., & Rio Corredoira, J. (2023). Which industrial sectors are affected by artificial intelligence? A bibliometric analysis of trends and perspectives. Sustainability, 15(16), 12176.
- Feigenbaum, E. A. (1984). Knowledge engineering: The applied side of artificial intelligence. Annals of the New York Academy of Sciences, 426(1), 91–107.
- Fitzsimmons, J. A., Fitzsimmons, M. J., & Bordoloi, S. K. (2014). Service Management: Operations, Strategy, Information Technology (9th ed.). McGraw-Hill Education.
- García-Díaz, V., Pascual-Espada, J., Pelayo G-Bustelo, C., & Cueva-Lovelle, J. M. (2015). Towards a standard-based domain-specific platform to solve machine learning-based problems. International Journal of Interactive Multimedia and Artificial Intelligence, 3(5), 6.
- Huang, M.-H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155–172.
- Jeremy Cook (n.d.). Introduction to Machine Learning on AWS. QA
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
- Lu, V. N., Wirtz, J., Kunz, W. H., Paluch, S., Gruber, T., Martins, A., & Patterson, P. G. (2020). Service robots, customers, and service employees: What can we learn from academic literature and where are the gaps? Journal of Service Theory and Practice, 30(3), 361–391.
- Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Machines vs. humans: The impact of AI chatbot disclosure on customer purchases. Marketing Science, 38(6), 937–947.
- McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. (1955). A proposal for the Dartmouth summer research project on artificial intelligence. Retrieved from Stanford University website.
- Minsky, M., & Papert, S. (1969). Perceptrons: An introduction to computational geometry. MIT Press.
- Mishra, R. K., Raj, H., Urolagin, S., Jothi, J. A. A., & Nawaz, N. (2022). Cluster-based knowledge graph and entity-relation representation on tourism economical sentiments. Applied Sciences, 12(8105), 8105.
- Mitchell, M. (1998). An Introduction to Genetic Algorithms. MIT Press.
- Nadella, S. (2016, June 28). Microsoft CEO Satya Nadella: Humans and A.I. can work together to solve society’s challenges. Slate.
- Ok, Ş. (2024). The impact of artificial intelligence on the service industry and consumer behavior: A bibliometric analysis. The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 27, 203–213.
- Rosenblatt, F. (1957). The Perceptron—a perceiving and recognizing automaton (Project Para). Cornell Aeronautical Laboratory.
- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.
- Sarker, I. H. (2021). Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science, 2(1), 420.
- Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(1), 160.
- Sheehan, B., Jin, H. S., & Gottlieb, U. (2020). Customer service chatbots: Anthropomorphism and adoption. Journal of Business Research, 115, 14–24.
- Smith, P., & Garcia, A. (2025). Bridging AI analytics and human-centric service designs: A roadmap for retail experiences. Service Science, 17(2), 58–70.
- Takayanagi, H. (2019). Expectation for AI (Artificial Intelligence) on elderly medical care. Japanese Journal of Geriatrics, 56, 254–259.
- Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460.
- Van Eck, N. J., & Waltman, L. (2014). Visualizing bibliometric networks. In Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring scholarly impact (pp. 285–320). Springer.
- Zou, K. H., & Li, J. Z. (2022). Enhanced Patient-Centricity: How the Biopharmaceutical Industry Is Optimizing Patient Care through AI/ML/DL. Healthcare, 10(10), 1997.