References
- Asaro, P. (2019). The labor of surveillance and bureaucratized killing: New subjectivities of military drone operators. Social Semiotics, 29(1), 73-91. https://doi.org/10.1080/10350330.2018.1504731
- Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford University Press.
- Brennan, M. (2022). Artificial intelligence and algorithmic bias: Addressing fairness in security technologies. AI & Society, 37(3), 435-450. https://doi.org/10.1007/s00146-021-01189-2
- Bryson, J. J. (2020). The artificial intelligence of ethics and the ethics of artificial intelligence. Ethics and Information Technology, 22(1), 1-10. https://doi.org/10.1007/s10676-019-09550-5
- Calo, R. (2020). Artificial intelligence policy: A primer and roadmap. Stanford Law Review, 72(5), 766-810.
- Chen, X., Liu, Y., & Wang, Z. (2020). Machine learning for cybersecurity: Challenges and opportunities. Computers & Security, 94, 101862. https://doi.org/10.1016/j.cose.2020.101862
- Crawford, K. (2021). Atlas of AI: Power, politics, and the planetary costs of artificial intelligence. Yale University Press.
- Ferguson, A. G. (2020). The rise of big data policing: Surveillance, race, and the future of law enforcement. NYU Press.
- Gorwa, R., Binns, R., & Katzenbach, C. (2022). Algorithmic content moderation: Technical and political challenges in the automation of platform governance. Big Data & Society, 9(1), 1-15. https://doi.org/10.1177/20539517221086422
- Koopman, P., & Wagner, M. (2019). Autonomous vehicle safety: An interdisciplinary challenge. IEEE Security & Privacy, 17(3), 41-48. https://doi.org/10.1109/MSEC.2019.2893731
- Laird, J. E., Lebiere, C., & Rosenbloom, P. S. (2021). A standard model of the mind: Toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics. AI Magazine, 42(1), 27-42. https://doi.org/10.1609/aimag.v42i1.5294
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
- Nguyen, T., & Zhao, R. (2021). Biometric authentication systems and artificial intelligence: Opportunities and risks. Journal of Information Security and Applications, 60, 102888. https://doi.org/10.1016/j.jisa.2021.102888
- O’Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown Publishing Group.
- Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J. F., Breazeal, C., ... & Wellman, M. (2019). Machine behaviour. Nature, 568(7753), 477-486. https://doi.org/10.1038/s41586-019-1138-y
- Raji, I. D., & Buolamwini, J. (2019). Actionable auditing: Investigating the impact of public scrutiny on large-scale face recognition systems. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 429-435. https://doi.org/10.1145/3306618.3314244
- Russell, S. J., & Norvig, P. (2020). Artificial intelligence: A modern approach. Pearson Education.
- Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
- Schneier, B. (2021). Artificial intelligence and the future of security: Risks, ethics, and governance. Harvard Kennedy School Journal of AI & Security, 3(1), 57-72.
- Sheridan, T. B. (2016). Human-robot interaction: Status and challenges. Human Factors, 58(4), 525-532. https://doi.org/10.1177/0018720816644364
- Smith, H., Jones, M., & Patel, A. (2019). AI-based security systems: A critical analysis. Cybersecurity Journal, 5(2), 89-105.
- Wayman, J. (2021). Biometric systems: Design, performance, and applications. Springer.
- Zuboff, S. (2018). The age of surveillance capitalism: The fight for a human future at the new frontier of power. PublicAffairs.