References
- Agarwal, S., et al. (2022). AI-powered Chatbots in E-commerce: Enhancing Customer Experience. International Journal of E-commerce.
- Chen, J., et al. (2020). Data-Driven Decision Making in Marketing. Journal of Marketing Analytics. Garcia, L. (2021). Emerging Trends in AI Marketing in Latin America. Journal of Latin American Marketing.
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer Science & Business Media.
- Johnson, R., & Zhang, T. (2019). Deep learning for natural language processing: Theory and practice. Springer.
- Jones, A., & Brown, C. (2019). Sociology and Marketing: Insights for Understanding Consumer Behavior. London: Palgrave Macmillan.
- Jones, E., et al. (2022). Navigating GDPR: Implications for AI Marketing in Europe. European Journal of Marketing.
- Khan, A., Badshah, S., Liang, P., Khan, B., Waseem, M., Niazi, M., Akbar, M., (2022). Ethics of AI: A Systematic Literature Review of Principles and Challenges. In Proceedings of the International Conference on Evaluation and Assessment in Software Engineering.
- Kim, Y., & Park, S. (2022). AI-Powered Personalization and Sales Growth. Journal of Marketing Management.
- Lee, M., & Lee, Y. (2021). Ethical Considerations in AI-Driven Marketing: Challenges and Opportunities. Journal of Marketing Ethics, 15(2), 123-140.
- Li, X., & Liang, X. (2023). Personalized Recommendations and Customer Engagement. Journal of Consumer Research.
- Orgaz, G. B., Jung, J. J., Camacho, D., (2016). Social big data: Recent achievements and new challenges. An international journal on information fusion, Vol. 28, pp. 45–59, DOI: https://doi.org/10.1016/j.inffus.2015.08.005
- Orgaz, G. B., Jung, J. J., Camacho, D., (2016). Social big data: Recent achievements and new challenges. An international journal on information fusion.
- Oseni, A., Moustafa, N., Janicke, H., Liu, P., Tari, Z. and Vasilakos, A. (2021). Security and Privacy for Artificial Intelligence: Opportunities and Challenges. arXiv:2102.04661 [cs]. [online] Available at: https://arxiv.org/abs/2102.04661
- Russell, S. J., & Norvig, P. (2020). Artificial intelligence: A modern approach. Pearson.
- Smith, J., & Johnson, A. (2020). “Impactul inteligenței artificiale asupra eficacității campaniilor de marketing online: un studiu de caz”. Journal of Marketing Technology, 8(2), 45-62.
- Smith, J. (2020). The Psychology of Consumer Behavior. New York: Routledge.
- Smith, J. (2023). The State of AI in North American Marketing. Marketing Insights Report.
- Toorajipour, R., et al. (2021). The Impact of AI on Internet Marketing Campaigns. Journal of Marketing Automation.
- Wang, Q., & Zhang, L. (2021). Personalized Communication and Customer Retention. Journal of Retailing.
- Wang, W., Siau, K., (2018). Ethical and Moral Issues with AI-A Case Study on Healthcare Robots. In 24th Americas Conference on Information Systems 2018: Digital Disruption, AMCIS 2018. Association for Information Systems. DOI: https://doi.org/Americas Conference on Information Systems (AMCIS 2018)
- Wang, Y. (2020). When artificial intelligence meets educational leaders’ data-informed decision-making: A cautionary tale. Studies in Educational Evaluation.
- Wong, A. (2023). AI Marketing Trends in Asia-Pacific. Asia-Pacific Business Review.
- Wigmore, I. (2019). Black box AI. TECHTARGET NETWORK, DOI: https://www.techtarget.com/whatis/definition/black-box-AI
- Zhang, Y., Wu, M., Tian, G. Y., Zhang, G., Lu, J . (2021), Ethics and privacy of artificial intelligence: Understandings from bibliometrics, Knowledge-Based Systems, Vol. 222,. DOI: https://doi.org/10.1016/j.knosys.2021.106994
- Zia, D.T. (2023). AI-Powered Personalization: How Machine Learning is Transforming Customer Experience. Techopedia.