References
- Abu-Shady, M. and Kaabar, M. K. A. (2021). A generalized definition of the fractional derivative with applications. Mathematical Problems in Engineering, 2021, p. 9444803. doi: 10.1155/2021/9444803
- Baranowski, J., Bauer, W., Zagórowska, M., Dziwiński, T., & Piątek, P. (2015). Timedomain Oustaloup approximation. In Proceedings of the 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), 116–120. IEEE. New York, USA. doi:10.1109/MMAR.2015.7283857
- Cohen, G. H. and Coon, G. A. (1953). Theoretical consideration of retarded control. Transactions of the ASME, 75, pp. 827–834. doi:10.1115/1.4015451
- Ziegler, J. G. & Nichols, N. B. (1942). Optimum settings for automatic controllers. Transactions of the ASME, 64, pp. 759–768. doi:10.1115/1.4019264
- Guedida, S., Tabbache, B., Nounou, K. and Idir, A. (2024). Reduced-order fractionalized controller for disturbance compensation based on direct torque control of DSIM with less harmonic. Electrica, 24(2), pp. 450–462. doi: 10.5152/electrica.2024.23194
- Idir, A., Bensafia, Y. and Canale, L. (2024). Influence of approximation methods on the design of the novel low-order fractionalized PID controller for aircraft system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46, p. 98. doi: 10.1007/s40430-023-04627-7
- Idir, A., Canale, L., Tadjer, S. A. & Chekired, F. (2022). High-order approximation of fractional PID controller based on Grey Wolf Optimization for DC motor. In Proceedings of the 2022 IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pp. 1–6. IEEE, New York, USA. doi:10.1109/EEEIC/ICPSEurope54979.2022.9854520
- Li, X. and Rosenfeld, J. A. (2021). Fractional order system identification with occupation kernel regression. IEEE Control Systems Letters, 5(2), pp. 640–645. doi: 10.1109/LCSYS.2020.3046408
- Nasir, M., & Khadraoui, S. (2021). Fractional-order PID Controller Design using PSO and GA. In Proceedings of the 14th International Conference on Developments in eSystems Engineering (DeSE 2021), pp. 192–197. IEEE. doi:10.1109/DeSE54285.2021.9719562
- Martinez-Patiño, L. M., Perez-Pinal, F. J., Soriano-Sánchez, A. G., Rico-Secades, M., Zarate-Orduño, C. and Nuñez-Perez, J. C. (2023). Fractional PID controller for voltage-lift converters. Fractal and Fractional, 7(7), p. 542. doi: 10.3390/fractalfract7070542
- Sultan, G. A., Sheet, A. F., Ibrahim, S. M., & Farej, Z. K. (2021). Speed control of DC motor using fractional-order PID controller based on particle swarm optimization. Indonesian Journal of Electrical Engineering and Computer Science, 22(3), 1345–1353.
- Meneses, H. and Arrieta, O. (2022). FOPI/FOPID tuning rule based on a fractional order model for the process. Fractal and Fractional, 6(9), p. 478. doi: 10.3390/fractalfract6090478
- Mohamed, A. H., Bahgat, M., Abdel-Ghany, A. M. and El-Zoghby, H. M. (2023). Ant colony optimization of fractional-order PID controller based on virtual inertia control for an isolated microgrid. Current Chinese Computer Science, 7(1), pp. 40–54. doi: 10.2174/2352096516666221014160557
- Mohammed, I. K. and Abdulla, A. I. (2018). Fractional order PID controller design for speed control DC motor based on artificial bee colony optimization. International Journal of Computer Applications, 179(24), pp. 1–6. doi: 10.1109/NaBIC.2013.6617873
- Nesri, M., Benkadi, H., Sifelislam, G., Idir, A. and Benkhoris, M. F. (2024). Robust adaptive speed control for the DC motor based on a modified MRAC. Communications – Scientific Letters of the University of Žilina, 26(4), pp. C38–C46. doi: 10.26552/com.C.2024.055
- Oustaloup, A. (1991). La commande CRONE: commande robuste d’ordre non entier. Paris: Hermes.
- Pandey, A. and Murray, R. M. (2022). Robustness guarantees for structured model reduction of dynamical systems with applications to biomolecular models. International Journal of Robust and Nonlinear Control, 32(1), pp. 231–257. doi: 10.1002/rnc.6013
- Patil, M. D., Vadirajacharya, K. and Khubalkar, S. W. (2021). Design and tuning of digital fractional-order PID controller for permanent magnet DC motor. IETE Journal of Research, 69(7), pp. 4349–4359 doi: 10.1080/03772063.2021.1942243
- Patra, A. K. and Patra, A. (2020). Genetic algorithm based FOPID controller design for balancing an inverted pendulum (IP). In: IEEE International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE). Odisha, India. doi: 10.1109/CISPSSE49931.2020.9212241
- Podlubny, I. (1999). Fractional order systems and PIλDμ controllers. IEEE Transactions on Automatic Control, 44(1), pp. 208–214. doi: 10.1109/9.739144
- Pradhan, R., Majhi, S. K., Pradhan, J. K. and Pati, B. B. (2019). Optimal fractional order PID controller design using ant lion optimizer. Ain Shams Engineering Journal, 11(4), pp. 1181–1191. doi: 10.1016/j.asej.2019.10.005
- Rukkaphan, S. and Sompracha, C. (2020). Fractional order model identification for pressure process control system by cuckoo search algorithm. In: 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE Phuket, Thailand. doi: 10.1109/ECTI-CON49241.2020.9158296
- Shah, P. and Sekhar, R. (2019). Closed loop system identification of a DC motor using fractional order model. In: International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE). IEEE. Bali, Indonesia. doi: 10.1109/MoRSE48060.2019.8998744
- Tripathi, R. P., Gangwar, P. and Singh, A. (2021). Speed control of DC motor with Kalman filter and fractional order PID controller. In: International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). IEEE. Bhilai, Chhattisgarh, India. doi: 10.1109/ICAECT49130.2021.9392598
- Ziegler, J. G. and Nichols, N. B. (1942). Optimum settings for automatic controllers. Transactions of the ASME, 64, pp. 759–768.