Have a personal or library account? Click to login
Towards High-Performance DC Motor Control: Fractional Modelling and FOPID Optimisation Cover

Towards High-Performance DC Motor Control: Fractional Modelling and FOPID Optimisation

By: Bilel Kanzari and  Adel Taeib  
Open Access
|Jan 2026

Figures & Tables

Figure 1.

System identification using algorithms. ABC, artificial bee colony; ACO, ant colony optimisation; GA, genetic algorithm; PSO, particle swarm optimisation.
System identification using algorithms. ABC, artificial bee colony; ACO, ant colony optimisation; GA, genetic algorithm; PSO, particle swarm optimisation.

Figure 2.

Closed loop system with FOPID controller. FOPID, fractional-order proportional-integral-derivative.
Closed loop system with FOPID controller. FOPID, fractional-order proportional-integral-derivative.

Figure 3.

Optimisation structure with algorithm of tuning FOPID control parameters. FOPID, fractional-order proportional-integral-derivative.
Optimisation structure with algorithm of tuning FOPID control parameters. FOPID, fractional-order proportional-integral-derivative.

Figure 4.

XK-AUT1003A prototype model.
XK-AUT1003A prototype model.

Figure 5.

Block diagram of the experimental setup.
Block diagram of the experimental setup.

Figure 6.

Open-loop step response-based identification of a DC motor. PSO, particle swarm optimisation.
Open-loop step response-based identification of a DC motor. PSO, particle swarm optimisation.

Figure 7.

Comparison of open-loop step responses: integer vs. fractional models. ABC, artificial bee colony; ACO, ant colony optimisation; GA, genetic algorithm; PSO, particle swarm optimisation.
Comparison of open-loop step responses: integer vs. fractional models. ABC, artificial bee colony; ACO, ant colony optimisation; GA, genetic algorithm; PSO, particle swarm optimisation.

Figure 8.

Validation of model.
Validation of model.

Figure 9.

Convergence behaviour and statistical error comparison of optimisation algorithms. ABC, artificial bee colony; ACO, ant colony optimisation; GA, genetic algorithm; PSO, particle swarm optimisation.
Convergence behaviour and statistical error comparison of optimisation algorithms. ABC, artificial bee colony; ACO, ant colony optimisation; GA, genetic algorithm; PSO, particle swarm optimisation.

Figure 10.

Effort made control inputs with GIO and GFO. ABC, artificial bee colony; ACO, ant colony optimisation; GA, genetic algorithm; PSO, particle swarm optimisation.
Effort made control inputs with GIO and GFO. ABC, artificial bee colony; ACO, ant colony optimisation; GA, genetic algorithm; PSO, particle swarm optimisation.

Figure 11.

DC motor closed-loop response under FOPID-PSO control and effort evaluation. FOPID, fractional-order proportional-integral-derivative; PSO, particle swarm optimisation.
DC motor closed-loop response under FOPID-PSO control and effort evaluation. FOPID, fractional-order proportional-integral-derivative; PSO, particle swarm optimisation.

Figure 12.

Closed-loop dynamics with disturbances introduced at 2 s and 2.5 s. PSO, particle swarm optimisation.
Closed-loop dynamics with disturbances introduced at 2 s and 2.5 s. PSO, particle swarm optimisation.

DC motor parameters_

ParameterValueUnit
Rated voltage12V
No-load speed3,000RPM
No-load current0.1A
Rated torque0.05Nm
Rotor resistance2Ω
Rotor inductance15mH
Rotor inertia2.1 × 10−5kg/m2
Command voltage range−5 to +5V
Measured speed range0–3,000RPM

Control effort final values for integer and fractional models_

MethodPSOGAACOABC
uIO (V)6.62229.11408.32129.0678
uFO (V)6.47919.12268.46458.8118

Characteristic parameters of a DC motor_

ParametersSymbol
Moment of inertia of rotorT
Motor viscous frictionb
Electromotive force constantKe
Motor torque constantKt
Electric resistanceR
Electric inductanceL
Power gainP

Adjustment of FOPID using the first method for open-loop response-based parameter_

Parameters to use when 0.1 ≤ T ≤ 5
PIλDμ
1−1.05740.60141.18570.87960.2778
L24.54200.4025−0.3464−15.0846−2.1522
T0.35440.7921−0.0492−0.07710.0675
L2−46.7325−0.45081.737728.03882.4387
T2−0.00210.00180.0006−0.0000−0.0013
LT−0.3106−1.20500.03801.67110.0021

Integer and fractional model with optimal parameter set_

(a)
ba2a1a0Error (%)
ABC703.0400.10304.09115.34341.00
ACO568.2160.42704.70004.19272.34
GA1100.240.71006.67108.38640.88
PSO715.4890.45954.33915.45220.79

Adjustment of parameter for FOPID by the second method using the closed-loop response as a basis_

PIλDμ
10.41390.70671.32400.22930.8804
Kcr0.01450.0101−0.00810.0153−0.0048
Pcr−0.1584−0.0049−0.01630.09360.0061
1/ Kcr−0.4384−0.29510.1393−0.52930.0749
1/ Pcr−0.0855−0.10010.0791−0.04400.0810

Optimisation algorithm parameter settings_

AlgorithmPopulation sizeNumber of iterationsMain control parameters
PSO50100w = 0.7, c1 = 1.5, c2 = 1.5
GA40100Crossover = 0.8, Mutation = 0.05
ABC30100Limit = 50, food sources = 15
ACO25100α = 1, β = 2, ρ = 0.5
Number of decision variables Lower boundUpper bound
4 (b,a2,a1,a0) [0, 0, 0, 0][1,000, 1, 10, 10]
6 (b,a2,α2,a1, α1, a0) [0, 0, 0, 0, 0, 0][1,500, 1, 10, 10, 5, 10]
5(Kp,KI,λ,Kd,μ) [0, 0, 0, 0, 0][200, 200, 2, 10, 2]

Performance assessment of controllers applied to integer and fractional models_

KpKIλKdμOvershoot (%)Risetime (s)Settling time (s)
ABCIO140.275187.651.58610.68310.95822.05101.68753.5448
ACOIO90.42045.1570.94242.65840.89123.52312.36542.5447
GAIO42.89563.8451.20452.98210.99941.75481.54830.9543
PSOIO70.54830.4481.00543.5841.28541.45450.58981.0911
ZN1IO91.57870.65540.95825.32541.141510.5543.15547.5897
ZN2IO101.0560.5451.02544.55441.205411.2154.1144118.1545
ABCFO70.6225100.011.00250.68311.15320.00001.54871.9269
ACOFO48.60087.6170.95960.11900.87290.00001.53071.8454
GAFO74.06483.5841.10991.82810.88950.00001.69281.0516
PSOFO49.21965.3521.08232.00120.98990.00001.52801.0911
ZN1FO50.21570.2251.20154.54540.15214.45441,454.51.8474
ZN2FO60.124100.551.10245.15440.95547.54411,54851.77555
DOI: https://doi.org/10.2478/pead-2025-0030 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 448 - 466
Submitted on: Sep 7, 2025
|
Accepted on: Nov 15, 2025
|
Published on: Jan 16, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Bilel Kanzari, Adel Taeib, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.