Have a personal or library account? Click to login
Non-singular Fast Terminal Sliding Mode Control Integrated with Proportional Multi-Resonant-Based Controller for Multifunctional Grid-Tied LCL-Filtered Inverter Cover

Non-singular Fast Terminal Sliding Mode Control Integrated with Proportional Multi-Resonant-Based Controller for Multifunctional Grid-Tied LCL-Filtered Inverter

Open Access
|Sep 2025

References

  1. Alali, M. A. E., Shtessel, Y. B. and Barbot, J. P. (2019). Grid-Connected Shunt Active LCL Control via Continuous Sliding Modes. IEEE/ASME Transactions on Mechatronics, 24(2), pp. 729–740. doi: 10.1109/TMECH.2019.2896140
  2. Alathamneh, M., Ghanayem, H. and Nelms, R. M. (2022). Bidirectional Power Control for a Three-Phase Grid-Connected Inverter under Unbalanced Grid Conditions Using a Proportional-Resonant and a Modified Time-Domain Symmetrical Components Extraction Method. Energies, 15(24), p. 9564. doi: 10.3390/en15249564
  3. Altin, N., Ozdemir, S., Komurcugil, H. and Sefa, I. (2018). Sliding-Mode Control in Natural Frame with Reduced Number of Sensors for Three-Phase Grid-Tied LCL-Interfaced Inverters. IEEE Transactions on Industrial Electronics, 66(4), pp. 2903–2913. doi: 10.1109/TIE.2018.2847675
  4. Ammar, A., Belaroussi, O., Benakcha, M., Zemmit, A. and Ameid, T. (2024). Super-Twisting MRAS Observer-Based Non-linear Direct Flux and Torque Control for Induction Motor Drives. Power Electronics and Drives, 9, pp. 374–396. doi: 10.2478/pead-2024-0024
  5. Avci, E. and Ucar, M. (2020). Proportional Multi-Resonant-Based Controller Design Method Enhanced with a Lead Compensator for Stand-Alone Mode Three-Level Three-Phase Four-Leg Advanced T-NPC Inverter System. IET Power Electronics, 13(4), pp. 863–872. doi: 10.1049/iet-pel.2019.0765
  6. Bacha, S., Munteanu, I., & Bratcu, A. I. (2014). Power electronic converters: modeling and control (Vol. 4). London, UK: Springer.
  7. Boopathi, R. and Indragandhi, V. (2023). Control Techniques for Renewable Energy Integration with Shunt Active Filter: A Review. International Journal of Ambient Energy, 44(1), pp. 424–441. doi: 10.1080/01430750.2022.2128413
  8. Bosch, S., Staiger, J. and Steinhart, H. (2017). Predictive Current Control for an Active Power Filter with LCL-Filter. IEEE Transactions on Industrial Electronics, 65(6), pp. 4943–4952. doi: 10.1109/TIE.2017.2772176
  9. Boukattaya, M., Mezghani, N. and Damak, T. (2018). Adaptive Nonsingular Fast Terminal Sliding-Mode Control for the Tracking Problem of Uncertain Dynamical Systems. ISA Transactions, 77, pp. 1–19. doi: 10.1016/j.isatra.2018.04.007
  10. Cha, H., Vu, T. K. and Kim, J. E. (2009). Design and control of proportional-resonant controller based photovoltaic power conditioning system. 2009 IEEE Energy Conversion Congress and Exposition. IEEE, pp. 2198–2205.
  11. Chen, C. I., Chen, Y. C. and Chen, C. H. (2022). Recurrent Wavelet Fuzzy Neural Network-Based Reference Compensation Current Control Strategy for Shunt Active Power Filter. Energies, 15(22), p. 8687. doi: 10.3390/en15228687
  12. Dehghani, M., Mardaneh, M. and Shafiei, M. H. (2020). Sliding mode control for load harmonics compensation and PV voltage regulation in a grid-tied inverter through a single-stage MPPT. 2020 28th Iranian Conference on Electrical Engineering (ICEE). IEEE, pp. 1–6.
  13. Guzman, R., de Vicuna, L. G., Morales, J., Castilla, M. and Miret, J. (2016). Model-Based Active Damping Control for Three-Phase Voltage Source Inverters with LCL Filter. IEEE Transactions on Power Electronics, 32(7), pp. 5637–5650. doi: 10.1109/TPEL.2016.2605858
  14. Hao, X., Yang, X., Liu, T., Huang, L. and Chen, W. (2012). A Sliding-Mode Controller with Multiresonant Sliding Surface for Single-Phase Grid-Connected VSI with an LCL Filter. IEEE Transactions on Power Electronics, 28(5), pp. 2259–2268. doi: 10.1109/TPEL.2012.2218133
  15. Hou, S., Qiu, Z., Chu, Y., Gao, J. and Fei, J. (2024). Hybrid Intelligent Control Using Hippocampus-Based Fuzzy Neural Networks for Active Power Filter. IEEE Transactions on Power Electronics, 39(12), pp. 15924–15942. doi: 10.1109/TPEL.2024.3449043
  16. Huang, M., Li, H., Wu, W. and Blaabjerg, F. (2019). Observer-Based Sliding Mode Control to Improve Stability of Three-Phase LCL-Filtered Grid-Connected VSIs. Energies, 12(8), p. 1421. doi: 10.3390/en12081421
  17. Huang, J., Zhao, Y., Wang, J. and Zhang, P. (2023). A Hybrid Active Damping Strategy for Improving the Adaptability of LCL Converter in Weak Grid. Electronics, 13(1), p. 144. doi: 10.3390/electronics13010144
  18. Kołek, K. and Firlit, A. (2021). A New Optimal Current Controller for a Three-Phase Shunt Active Power Filter Based on Karush–Kuhn–Tucker Conditions. Energies, 14(19), p. 6381. doi: 10.3390/en14196381
  19. Liu, T., Liu, J., Liu, Z. and Liu, Z. (2019). A Study of Virtual Resistor-Based Active Damping Alternatives for LCL Resonance in Grid-Connected Voltage Source Inverters. IEEE Transactions on Power Electronics, 35(1), pp. 247–262. doi: 10.1109/TPEL.2019.2911163
  20. Lorzadeh, I., Askarian Abyaneh, H., Savaghebi, M., Bakhshai, A. and Guerrero, J. M. (2016). Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters. Energies, 9(8), p. 642. doi: 10.3390/en9080642
  21. Lou, Z., Li, P., Ma, K. and Teng, F. (2022). Harmonics and Interharmonics Detection Based on Synchrosqueezing Adaptive S-Transform. Energies, 15(13), p. 4539. doi: 10.3390/en15134539
  22. Maciążek, M. (2022). Active Power Filters and Power Quality. Energies, 15(22), p. 8483. doi: 10.3390/en15228483
  23. Mondal, B. and Karuppaswamy, A. (2024). A Non-Iterative Design Method for Output LCL Filter with RC Damping in Grid-Connected Inverters. IEEE Transactions on Industrial Electronics, 71(12), pp. 15768–15779. doi: 10.1109/TIE.2024.3387080
  24. Rabbani, A., Mardaneh, M., Jamshidpour, E. and Poure, P. (2023). Improved sliding mode control and active damping for LCL-filtered voltage source inverter connected to distorted grid. 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). IEEE, pp. 1–6.
  25. Satpathy, G. and De, D. (2024). A Novel Proportional Multi-Resonant Current Controller Strategy for Reduced DC Voltage Fed D-STATCOM with Internal LCL Resonance Damping. Power Electronics and Drives, 9(44), pp. 122–141. doi: 10.2478/pead-2024-0008
  26. Sozanski, K. and Szczesniak, P. (2023). Advanced Control Algorithm for Three-Phase Shunt Active Power Filter Using Sliding DFT. Energies, 16(3), p. 1453. doi: 10.3390/en16031453
  27. Teodorescu, R., Blaabjerg, F., Liserre, M. and Loh, P. C. (2006). Proportional-Resonant Controllers and Filters for Grid-Connected Voltage-Source Converters. IEE Proceedings - Electric Power Applications, 153(5), pp. 750–762. doi: 10.1049/ip-epa:20060008
  28. Trinh, Q. N. and Lee, H. H. (2012). An Advanced Current Control Strategy for Three-Phase Shunt Active Power Filters. IEEE Transactions on Industrial Electronics, 60(12), pp. 5400–5410. doi: 10.1109/TIE.2012.2229677
  29. Utkin, V. I. (1978). Sliding Modes and Their Application in Variable Structure Systems. Moscow: MIR Publishers.
  30. Zhang, L. and Fei, J. (2023). Intelligent Complementary Terminal Sliding Mode Using Multiloop Neural Network for Active Power Filter. IEEE Transactions on Power Electronics, 38(8), pp. 9367–9383. doi: 10.1109/TPEL.2023.3266738
  31. Zheng, X., Qiu, K., Hou, L., Liu, Z. and Wang, C. (2018). Sliding-mode control for grid-connected inverter with a passive damped LCL filter. 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, pp. 739–744.
DOI: https://doi.org/10.2478/pead-2025-0018 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 257 - 270
Submitted on: Feb 26, 2025
|
Accepted on: Jul 3, 2025
|
Published on: Sep 7, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Amir Rabbani, Mahla Dehghani, Mohammad Mardaneh, Ehsan Jamshidpour, Saeed Hasanvand, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.