Have a personal or library account? Click to login
Optimal Tuning of Digital PID Controllers for Commercial BLDC Motors Using the Nelder–Mead Method Cover

Optimal Tuning of Digital PID Controllers for Commercial BLDC Motors Using the Nelder–Mead Method

Open Access
|Jul 2025

References

  1. Aishwarya, V. and Jayanand, B. (2016). Estimation and control of sensorless brushless DC motor drive using extended Kalman filter. In: 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, 2016.
  2. Alberto, A. P., Michael, F. and Chunjiang, Q. (2009). Particle swarm optimization for PID tuning of a BLDC motor. In: 2009 IEEE International Conference on Systems. Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009, pp. 3917–3922.
  3. Basilio, J. C. and Matos, S. R. (2002). Design of PI and PID Controllers with Transient Performance Specification. IEEE Transactions on Education, 45(4), pp. 364–370. doi: 10.1109/TE.2002.804399
  4. Bazanella, A. S., Pereira, L. F. A. and Parraga, A. (2017). A New Method for PID Tuning Including Plants without Ultimate Frequency. IEEE Transactions on Control Systems Technology, 25(2), pp. 637–644. doi: 10.1109/TCST.2016.2557723
  5. Bosso, A., Conficoni, C., Raggini, D. and Tilli, A. (2021). A Computational-Effective Field-Oriented Control Strategy for Accurate and Efficient Electric Propulsion of Unmanned Aerial Vehicles. IEEE/ASME Transactions on Mechatronics, 26(3), pp. 1501–1511. doi: 10.1109/TMECH.2020.3022379
  6. Chau, K. T., Zhang, D., Jiang, J. Z., Liu, C. and Zhang, Y. (2007). Design of a Magnetic-Geared Outer-Rotor Permanent-Magnet Brushless Motor for Electric Vehicles. IEEE Transactions on Magnetics, 43(6), pp. 2504–2506. doi: 10.1109/TMAG.2007.893714
  7. Chen, G, Y. and Perng. J. W. (2017). PI speed controller design based on GA with time delay for BLDC motor using DSP. In: 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017, pp. 1174–1179.
  8. Chen, Z., Tomita, M., Doki, S. and Okuma, S. (2000). New Adaptive Sliding Observers for Position- and Velocity-Sensorless Controls of Brushless DC Motors. IEEE Transactions on Industrial Electronics, 47(3), pp. 582–591. doi: 10.1109/41.847899
  9. Damodharan, P. and Vasudevan, K. (2010). Sensorless Brushless DC Motor Drive Based on the Zero-Crossing Detection of Back Electromotive Force (EMF) from the Line Voltage Difference. IEEE Transactions on Energy Conversion, 25(3), pp. 661–668. doi: 10.1109/TEC.2010.2041781
  10. De, A., Stewart-Height, A. and Koditschek, D. E. (2019). Task-Based Control and Design of a BLDC Actuator for Robotics. IEEE Robotics and Automation Letters, 4(3), pp. 2393–2400. doi: 10.1109/LRA.2019.2894860
  11. Gabriel, H. and Nesimi, E. (2016). Wide Speed Range Sensorless Operation of Brushless Permanent-Magnet Motor Using Flux Linkage Increment. IEEE Transactions on Industrial Electronics, 63(7), pp. 4052–4060. doi: 10.1109/TIE.2016.2544250
  12. Gopan, V. K. and Shree, J. D. (2022). Implementation of a High Power Quality BLDC Motor Drive Using Bridgeless DC to DC Converter with Fuzzy Logic Controller. Engineering, Technology & Applied Science Research, 12(5), pp. 9178–9185. doi: 10.48084/etasr.5213
  13. Gujjar, M, N. and Kumar, P. (2017). Comparative analysis of field oriented control of BLDC motor using SPWM and SVPWM techniques. In: 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 2017, pp. 924–929.
  14. Ho, T, Y., Chen, M, S., Lin, J, S., Chen, P, H. (2012). The design and implementation of the BLDC motor drive for a washing machine. In: The 1st IEEE Global Conference on Consumer Electronics, Tokyo, Japan, 2012, pp. 156–157.
  15. Huang, C. L., Lee, F. C., Liu, C. J., Chen, J. Y., Lin, Y. J. and Yang, S. C. (2022). Torque Ripple Reduction for BLDC Permanent Magnet Motor Drive Using DC-Link Voltage and Current Modulation. IEEE Access, 10, pp. 51272–51284. doi: 10.1109/ACCESS.2022.3173325
  16. Huba, M., Bisták, P., Briežnik, J. and Vrancic, D. (2024). Constrained Series PI, PID and PIDA Controller Design Inspired by Ziegler–Nichols. Power Electronics and Drives, 9(44), pp. 331–346. doi: 10.2478/pead-2024-0021
  17. Khan, K. R. and Miah, M. S. (2020). Fault-Tolerant BLDC Motor-Driven Pump for Fluids with Unknown Specific Gravity: An Experimental Approach. IEEE Access, 8, pp. 30160–30173. doi: 10.1109/ACCESS.2020.2972942
  18. Lee, T. Y., Seo, Y. K., Kim, Y. J. and Jung, S. Y. (2016). Motor Design and Characteristics Comparison of Outer-Rotor-Type BLDC Motor and BLAC Motor Based on Numerical Analysis. IEEE Transactions on Applied Superconductivity, 26(4), pp. 1–6. doi: 10.1109/TASC.2016.2548079.
  19. Mohanraj, D., Aruldavid, R., Verma, R., Sathiyasekar, K., Barnawi, A. B. and Chokkalingam, B. (2022). A Review of BLDC Motor: State of Art, Advanced Control Techniques, and Applications. IEEE Access, 10, pp. 54833–54869. doi: 10.1109/ACCESS.2022.3175011
  20. Nelder, J. A. and Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7, pp. 308–313. doi: 10.1093/comjnl/7.4.308
  21. Owusu, G., Annan, J. K. and Nunoo, S. (2023). Neural Network-Based Optimisation of Sinusoidal PWM Controller for VSI-Driven BLDC Motor. Power Electronics and Drives, 8, pp. 275–298. doi: 10.2478/pead-2023-0018
  22. Ozturk, S. B. and Toliyat, H. A. (2011). Direct Torque and Indirect Flux Control of Brushless DC Motor. IEEE/ASME Transactions on Mechatronics, 16(2), pp. 351–360. doi: 10.1109/TMECH.2010.2043742
  23. Pakdeeto, J., Wansungnoen, S., Areerak, K. and Areerak, K. (2023). Optimal Speed Controller Design of Commercial BLDC Motor by Adaptive Tabu Search Algorithm. IEEE Access, 11, pp. 79710–79720. doi: 10.1109/ACCESS.2023.3300233
  24. Raja, S. and Rathinakumar, M. (2023). Transient Analysis of the Fuzzy Logic-based Speed Control of a Three-phase BLDC Motor. Engineering, Technology & Applied Science Research, 13(1), pp. 9855–9860. doi: 10.48084/etasr.5419
  25. Rubaai, A. and Young, P. (2015). Hardware/Software Implementation of Fuzzy-Neural-Network Self-Learning Control Methods for Brushless DC Motor Drives. IEEE Transactions on Industry Applications, 52(1), pp. 414–424. doi: 10.1109/TIA.2015.2468191
  26. Shao, J. (2006). An Improved Microcontroller-Based Sensorless Brushless DC (BLDC) Motor Drive for Automotive Applications. IEEE Transactions on Industry Applications, 42(5), pp. 1216–1221. doi: 10.1109/TIA.2006.880888
  27. Sinlapakun, V. and Assawinchaichote, W. (2015). Optimized PID Controller Design for Electric Furnace Temperature Systems With Nelder Mead Algorithm. In: 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Hua Hin, Thailand, 2015.
  28. Ubare, P. and Sonawane, D. N. (2022). Performance Assessment of the BLDC Motor in EV Drives using Nonlinear Model Predictive Control. Engineering, Technology & Applied Science Research, 12(4), pp. 8901–8909. doi: 10.48084/etasr.4976
DOI: https://doi.org/10.2478/pead-2025-0015 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 210 - 226
Submitted on: Apr 15, 2025
|
Accepted on: Jun 27, 2025
|
Published on: Jul 29, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Son T. Nguyen, Tu M. Pham, Anh Hoang, Trung T. Cao, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.