Have a personal or library account? Click to login
Hybrid Flatness-Based Control of Dual Star Induction Machine Drive System for More Electrical Aircraft Cover

Hybrid Flatness-Based Control of Dual Star Induction Machine Drive System for More Electrical Aircraft

Open Access
|Jan 2024

References

  1. Baneira, F., Doval-Gandoy, J., Yepes, A. G., Ĺopez, Ó. and Pérez-Estévez, D. (2017). Control Strategy for Multiphase Drives with Minimum Losses in the Full Torque Operation Range under Single Open-Phase Fault. EEE Transactions on Power Electronics, 32(8), pp. 6275–6285. doi: 10.1109/TPEL.2016.2620426.
  2. Barrero, F. and Duran, M. J. (2016). Recent Advances in the Design, Modeling, and Control of Multiphase Machines – Part I. IEEE Transactions on Industrial Electronics, 63(1), pp. 449–458. doi: 10.1109/TIE.2015.2447733.
  3. Chiasson, J. (1996). Nonlinear Controllers for an Induction Motor. Control Engineering Practice, 4(7), pp. 977–990. doi: 10.1016/0967-0661(96)00097-4.
  4. Chitra, V. and Prabhakar, R. (2006). Induction motor speed control using fuzzy logic controller. World Acad. Sci. Eng. Technol. 2006, 23, 17–22.
  5. Dannehl, J. and Fuchs, F.W. (2006). Flatness-based control of an induction machine fed via voltage source inverter-concept, control design and performance analysis. In Proceedings of the IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 6–10 November 2006; pp. 5125–5130.
  6. Fan, L. and Zhang, L. (2011). An Improved Vector Control of an Induction Motor Based on Flatness. Procedia Engineering, 15, pp. 624–628. doi: 10.1016/j.proeng.2011.08.116.
  7. Fliess, M., Levine, J., Martin, P. and Rouchon, P. (1995). Flatness and Defect of Non-Linear Sys-tems: Introductory Theory and Examples. International Journal of Control, 61(6), pp. 1327–1361. doi: 10.1080/00207179508921959.
  8. Fliess, M., Lévine, J., Martin, P. and Rouchon, P. (1999). A Lie-Bäcklund Approach to Equivalence and Flatness of Nonlinear Systems. IEEE Transactions on Automatic Control, 44(5), pp. 922–937. doi: 10.1109/9.763209.
  9. Ishihara, S., Tahara, K. and Hironaka, K. (2020). Feedforward Control Design for Shaking Table by Data Driven Control Considering Control Input Limitation. IFAC-PapersOnLine, 53(2), pp. 9011–9016. doi: 10.1016/j.ifacol.2020.12.2019.
  10. Jin, H. Y. and Zhao, X. M. (2019). Extended Kalman Filter-Based Disturbance Feed-Forward Compensation Considering Varying Mass in High-Speed Permanent Magnet Linear Synchronous Motor. Electrical Engineering, 101(2), pp. 537–544. doi: 10.1007/s00202-019-00802-z.
  11. Levi, E. (2008). Multiphase Electric Machines for Variable-Speed Applications. IEEE Transactions on Industrial Electronics, vol. 55, no. 5, pp. 1893–1909, May 2008.
  12. Levi, E., Bodo, N., Dordevic, O., Jones, M. (2013). Recent advances in power electronic converter control for multiphase drive systems. In Proceedings of the 2013 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Paris, France, 11–12 March 2013; pp. 158–167.
  13. Li, S., Fang, Z., Fukui, Y., Futatsukawa, K., Mizobata, S., Qiu, F., Sato, Y. and Shinozaki, S. (2018). Adaptive feedforward control design Based on Simulink for J-Parc Linac LLRF system. In: 9th International Particle Accelerator Conference, Vancouver, BC, Canada, pp. 2187–2189.
  14. Li, T., Xia, Y. and Ma, D. (2015). Flatness-Based Target Tracking for a Quadrotor Unmanned Aer-ial Vehicle. IFAC-PapersOnLine, 48(28), pp. 874–879. doi: 10.1016/j.ifacol.2015.12.240.
  15. Liu, Z., Li, Y. and Zheng, Z. (2018). A Review of Drive Techniques for Multiphase Machines. CES Transactions on Electrical Machines and Systems, 2(2), pp. 243–251. doi: 10.30941/cestems.2018.00030.
  16. Marino, R., Peresada, S. and Valigi, P. (1993). Adaptive Input-Output Linearizing Control of In-duction Motors. IEEE Transactions Automatic Control, 38(2), pp. 208–221. doi: 10.1109/9.250510.
  17. Martin, P., Rouchon, P. and Murray, R. M. (2006). Flat systems, equivalence and trajectory generation. 3rd cycle. Castro Urdiales (Espagne), France. 2006, pp. 81. cel-00392180
  18. Martin, P. and Rouchon, P. (1996a). Flatness and Sampling Control of Induction Motors. IFAC Proceedings Volumes, 29(1), pp. 2786–2791. doi: 10.1016/s1474-6670(17)58098-2.
  19. Martin, P. and Rouchon, P. (1996b). Two Remarks on Induction Motors. In: CESA’96 IMACS Multiconference. 1996. p. 76-9.
  20. Nesri, M., Nounou, K., Marouani, K., Houari, A. and Benkhoris, M. F. (2020). Efficiency Im-provement of a Vector-Controlled Dual Star Induction Machine Drive System. Electrical Engineer-ing, 102(2), pp. 939–952. doi: 10.1007/s00202-020-00924-9.
  21. Nounou, K., Benbouzid, M., Marouani, K., Charpentier, J. F. and Kheloui, A. (2018). Performance Comparison of Open-Circuit Fault-Tolerant Control Strategies for Multiphase Permanent Magnet Machines for Naval Applications. Electrical Engineering, 100(3), pp. 1827–1836. doi: 10.1007/s00202-017-0661-9.
  22. Ortega, R., Louis, J. and Delaleau, E. (2001). Modeling and Control of Induction Motors. International Journal of Applied Mathematics and Computer Science, 11(1), pp. 105–129. doi: NODOI.
  23. Petersen, I. R. and Tempo, R. (2014). Robust Control of Uncertain Systems: Classical Results and Recent Developments. Automatica, 50(5), pp. 1315–1335. doi: 10.1016/j.automatica.2014.02.042.
  24. Salem, A. and Narimani, M. (2019). A Review on Multiphase Drives for Automotive Traction Applications. IEEE Trans. Transp. Electrif, 5(4), pp. 1329–1348. doi: 10.1109/TTE.2019.2956355.
  25. Singh, K. V., Bansal, H. O. and Singh, D. (2020). Feed-Forward Modeling and Real-Time Implementation of an Intelligent Fuzzy Logic-Based Energy Management Strategy in a Series–Parallel Hybrid Electric Vehicle to Improve Fuel Economy. Electrical Engineering, 102(2), pp. 967–987. doi: 10.1007/s00202-019-00914-6.
  26. Wang, K., Zhu, Z. Q., Ren, Y. and Ombach, G. (2015). Torque Improvement of Dual Three-Phase Permanent-Magnet Machine with Third-Harmonic Current Injection. IEEE Transactions on Indus-trial Electronics, 62(11), pp. 6833–6844. doi: 10.1109/TIE.2015.2442519.
  27. Wang, X., Wang, Z., Xu, Z., Cheng, M., Wang, W. and Hu, Y. (2019). Comprehensive Diagnosis and Tolerance Strategies for Electrical Faults and Sensor Faults in Dual Three-Phase PMSM Drives. IEEE Transactions on Power Electronics, 34(7), pp. 6669–6684. doi: 10.1109/TPEL.2018.2876400.
  28. Xu, Y., Li, F., Jin, Z. and Huang, C. (2015). Flatness-Based Adaptive Control (FBAC) for STATCOM. Electric Power Systems Research, 122, pp. 76–85. doi: 10.1016/j.epsr.2014.12.023.
DOI: https://doi.org/10.2478/pead-2024-0004 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 50 - 62
Submitted on: Oct 14, 2023
|
Accepted on: Nov 30, 2023
|
Published on: Jan 20, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Mokhtar Nesri, Kamal Nounou, Guedida Sifelislam, Mohamed Fouad Benkhoris, Houari Azeddine, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.