References
- Ahlberg, J. H., Nilson, E. N., & Walsh, J.L. (1967). The theory of splines and their applications. Academic Press Inc., New York.
- Bac-Bronowicz, J., Banasik, P. & Chrobak, T. (2023). Automatic simplification of the geometry of a cartographic line using contractive self-mapping – illustrated with an example of a polyline band. Polish Cartographical Review, 55, 73–86. https://doi.org/10.2478/pcr-2023-0007
- Baig, S., Rahman, A., & Duncan, E. (2013). A review and conceptual framework for generalization of maps. In Developments in multidimensional spatial data models: Lecture notes in geoinformation and cartography. https://doi.org/10.1007/978-3-642-36379-5_12
- Bayer, T., Kolingerová, I., Čelonk, M., & Lysák, J. (2023). Simplification of contour lines, based on axial splines, with high-quality results. International Journal of Geographical Information Science, 37(7), 1520–1554. https://doi.org/10.1080/13658816.2023.2193969
- Birkhoff, G., & de Boor, C. (1964). Error bounds of spline interpolation. Journal of Mathematics and Mechanics, 13, 827–835.
- Bodansky, E., Gribov, A., & Pilouk, M. (2002). Smoothing and compression of lines obtained from raster- to-vector conversion. In D. Blostein, & Y. B. Kwon (Eds.), Graphics recognition algorithms and applications: GREC 2001 (pp. 235–243). Springer. https://doi.org/10.1007/3-540-45868-9_22
- Brigger, P., Hoeg, J., Unser, M. (2000). B-spline snakes: a flexible tool for parametric contour detection. IEEE Transactions on Image Processing, 9(9), 1484–1496. https://doi.org/10.1109/83.862624
- Burghardt, D. (2005). Controlled line smoothing by snakes. Geoinformatica, 9, 237–252. https://doi.org/10.1007/s10707-005-1283-3
- Cebrykow, P. (2017). Cartographic generalization yesterday and today. Polish Cartographical Review, 49, 5–15. https://doi.org/10.1515/pcr-2017-0001
- de Boor, C. (1978). A practical guide to splines. Springer-Verlag, New York.
- Farin, G. (2002). Curves and surfaces for computer-aided geometric design. Academic Press. https://doi.org/10.1016/B978-012249048-5/50010-3
- Floater, M.S., & Surazhsky, T. (2006). Parameterization for curve interpolation. Studies in Computational Mathematics, 12, 39–54. https://doi.org/10.1016/S1570-579X(06)80004-2
- Foerster, T., Stoter, J., & Köbben, B. (2007). Towards a formal classification of generalization operators. In Proceedings of the 23rd International Carto-graphic Conference (Vol. 4). International Cartographic Association.
- Guilbert, E., & Lin, H. (2006). B-spline curve smoothing under position constraints for line generalisation. In Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems (3–10). ACM. https://doi.org/10.1145/1183471.1183474
- Guilbert, E., & Saux, E. (2008). Cartographic generalisation of lines based on a B-spline snake model. International Journal of Geographical Information Science. 22, 847–870. https://doi.org/10.1080/13658810701689846
- Guo, Q., & Zhou, L., & Wang, L., & Sun, Y., & Li, X. (2017). Improvement of Snake Displacement Model for Roads Considering Cartographic Rules. Geomatics and Information Science of Wuhan University, 42, 1629–1634. https://doi.org/10.13203/j.whugis20160357
- Haron, H., Rehman, A., Adi, D., Saba, T., & Lim, S. P. (2012). Parametrization method on B-spline curve. Mathematical Problems in Engineering, 2012, Article 640472. https://doi.org/10.1155/2012/640472
- Heckbert, P., & Garland, M. (1997). Survey of polygonal surface simplification algorithms (Technical report). School of computer science, Carnegie Mellon University.
- Jiang, B., Xu, S., & Li, Z. (2023). Polyline simplification using a region proposal network integrating raster and vector features. GIScience and Remote Sensing, 60(1). https://doi.org/10.1080/15481603.2023.2275427
- Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: active contour models. International Journal of Computer Vision, 1, 321–331.
- Kettunen, P., Koski, C., & Oksanen, J. (2017). A design of contour generation for topographic maps with adaptive DEM smoothing. International Journal of Cartography, 3(1), 19–30. https://doi.org/10.1080/23729333.2017.1300998
- Kiciak, P. (2019). Podstawy modelowania krzywych i powierzchni: zastosowania w grafice komputerowej. [Fundamentals of curve and surface modeling: applications in computer graphics]. Wydawnictwo Naukowe PWN, Warszawa.
- Kuna J., Jeremicz J., Kociuba D., Niedźwiadek, R., Janus, K., Chachaj, J. (2024). The challenges of reconstructing the historic urban landscape of Lublin in the Lublin Union period (1569) in an interactive map. Studia Geohistorica, 12, 151–198. https://doi.org/10.12775/SG.2024.08.
- Li, Z. (2007a). Digital map generalization at the age of enlightenment: A review of the first forty years. The Cartographic Journal, 44, 80–93. https://doi.org/10.1179/000870407X173913
- Li, Z. (2007b). Algorithmic foundations of multi-scale spatial representation. CRC Press. https://doi.org/10.1201/9781420055435
- Li, H., Li, Z., & Mo, W. (2017). A time varying filter approach for empirical mode decomposition. Signal Processing, 138, 146–158. https://doi.org/10.1016/j.sigpro.2017.03.019
- Luebke, D. P. (2001). A developer’s survey of polygonal simplification algorithms. IEEE Computer Graphics and Applications, 21(7), 24–35. https://doi.org/10.1109/38.920624.
- McMaster, R.B., & Shea, K.S. (1992). Generalization in digital cartography. Association of American Geographers. Washington.
- Muller, J. C. (1991). Generalization of spatial databases. In D. J. Maguire, M. F. Goodchild, & D. W. Rhind (Eds.), Geographical information systems: Principles and applications (Vol. 1, pp. 457–475). Longman.
- Neun, M., Burghardt, D., & Weibel, R. (2009). Automated processing for map generalization using web services. Geoinformatica, 13, 425–452. https://doi.org/10.1007/s10707-008-0054-3
- Nieuwenhuizen, N., Lindsay, J. B., & DeVries, B. (2021). Smoothing of digital elevation models and the alteration of overland flow path length distributions. Hydrological Processes, 35(7),Articlee14271. https://doi.org/10.1002/hyp.14271.
- Nöllenburg, M., Merrick, D., Wolff, A., & Benkert, M. (2008). Morphing polylines: A step towards continuous generalization. Computers, Environment and Urban Systems, 32, 248–260. https://doi.org/10.1016/j.compenvurbsys.2008.06.004.
- Esri (2024). How smooth line and smooth polygon work. https://pro.arcgis.com/en/pro-app/3.1/tool-reference/cartography/how-smooth-line-and-smooth-polygon-work.htm
- Peterson, J. W. (2006). Arc length parameterization of spline curves. Taligent, Inc. https://www.saccade.com/writing/graphics/RE-PARAM.PDF, 1–11.
- Piegl, L., & Tiller W. (2012). The NURBS book. Springer-Verlag, Berlin.
- Podolskaia, E., Anders, K.-H., Haunert, J.-H. & Sester, M. (2013). Quality assessment for polygon generalization. https://doi.org/10.1201/9781420069273.ch16
- Saux, E. (2003). B-spline functions and wavelets for cartographic line generalization. Cartography and Geographic Information Science, 30(1),33–50. https://doi.org/10.1559/152304003100010938
- Schumaker, L. (2007). Spline functions: Basic theory. Cambridge University Press.
- Shan, B., Ni, W., Yuan X., Yang, D., Wang, X., & Liu, R. P. (2023). Graph learning from band-limited data by graph Fourier transform analysis. Signal Processing, 207, Article 108950. https://doi.org/10.1016/j.sigpro.2023.108950
- Spoerhase, J., Storandt, S., & Zink, J. (2019). Simplification of polyline bundles. In Proceedings of the 35th International Symposium on Computational Geometry (SoCG ‘19) (pp. 1–16). ACM. https://doi.org/10.48550/arXiv.1907.05296
- Steiniger, S., & Meier, S. (2004). Snakes: A technique for line smoothing and displacement in map generalisation. In 7th ICA Workshop on Generalisation and Multiple Representation (pp. 1–8). International Cartographic Association.
- Tutić, D., & Lapaine, M. (2010). New method for reducing sharp corners in cartographic lines with area preservation property. In Proceedings of the 14th International Conference on Geometry and Graphics (pp. 289–290). International Society for Geometry and Graphics.
- Weibel, R., & Jones, C.B. (1998). Computational perspectives on map generalization. GeoInformatica, 2, 307–314. https://doi.org/10.1023/A:1009748903798
- Weibel, R. (2020). Three essential building blocks for automated generalization. In L. Christophe, S. Mustière, & J. C. Ruas (Eds.), Generalisation in the age of AI: Matching human intuition with machine learning (pp. 56–69). CRC Press. https://doi.org/10.1201/9781003062646-7
- Velut, J., Benoit-Cattin, H., & Odet, C. (2007). Locally regularized smoothing B-snake. EURASIP Journal on Advances in Signal Processing, 2007, Article 76241, 1–12. doi: https://doi.org/10.1155/2007/76241
- Zaksek, K., & Podobnikar, T. (2005). An effective DEM generalization with basic GIS operations. In Proceedings of the 8th ICA Workshop on Generalisation and Multiple Representation. International Cartographic Association. https://gitlab.com/ica-gen/workshop-proceedings/-/raw/main/ica-gen-downloads/ica-gen/workshop2005/Zaksek_Podobnikar.pdf