Have a personal or library account? Click to login
Use of Copernicus data for developing a geoportal to support agricultural management monitoring in Poland Cover

Use of Copernicus data for developing a geoportal to support agricultural management monitoring in Poland

Open Access
|Aug 2025

References

  1. Amazon Web Services. (n.d.). https://aws.amazon.com/earth/
  2. ARMA, Agencja Restrukturyzacji i Modernizacji Rolnictwa. (2023). Pomoc finansowa dla producenta rolnego w związku ze szkodami w uprawach owocujących drzew owocowych, owocujących krzewów owocowych lub truskawek, spowodowanymi wystąpieniem w 2023 r. przymrozków wiosennych, gradu lub huraganu, które objęły co najmniej 30% i mniej niż 70% danej uprawy. https://www.gov.pl/web/arimr/pomoc-finansowa-dla-producentarolnego-w-zwiazku-ze-szkodami-w-uprawachowocujacych-drzew-owocowych-owocujacychkrzewow-owocowych-lub-truskawek-spowodowanymiwystapieniem-w-2023-r-przymrozkow-wiosennychgradu-lub-huraganu-ktore-objely-co-najmniej-30-i-mniej-niz-70-danej-uprawy
  3. Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing (5th ed.). Guilford Press.
  4. Chen, P., Liu, H., Wang, Z., Mao, D., Liang, C., Wen, L., Li, Z., Zhang, J., Liu, D., Zhuo, Y., & Wang, L. (2021). Vegetation dynamic assessment by NDVI and field observations for sustainability of China’s Wulagai River Basin. International Journal of Environmental Research and Public Health, 18(5), 2528. https://doi.org/10.3390/ijerph18052528
  5. Climate Changes. (n.d.). https://climate.copernicus.eu/
  6. Common System and Platform, Based on Copernicus Data and Services, for Agricultural Agencies in Poland. (n.d.). https://fpcup.pl/agri/
  7. Copernicus Atmosphere Monitoring Service. (n.d.). https://atmosphere.copernicus.eu/
  8. Copernicus Contributing Missions. (n.d.). https://dataspace.copernicus.eu/
  9. Copernicus Emergency Management Service. (n.d.). https://emergency.copernicus.eu/
  10. Copernicus Land Monitoring Service. (n.d.). https://land.copernicus.eu/en
  11. Copernicus Marine Service. (n.d.). https://marine.copernicus.eu/
  12. Copernicus Service on Support to EU External and Security Actions. (n.d.). https://sesa.security.copernicus.eu/
  13. Copernicus. (n.d.). https://www.copernicus.eu/en
  14. Dabrowska-Zielinska, K., Malinska, A., Bochenek, Z., Bartold, M., Gurdak, R., Paradowski, K., & Lagiewska, M. (2020). Drought model DISS based on the fusion of satellite and meteorological data under variable climatic conditions. Remote Sensing, 12(18), 2944. https://doi.org/10.3390/rs12182944
  15. Data and Information Access Services. (n.d.). https://www.copernicus.eu/en/access-data/dias)
  16. De Sherbinin, A., Reuben, A., Levy, M. A., & Johnson, L. (2013). Indicators in practice: How environmental indicators are being used in policy and management contexts. Center for International Earth Science Information Network; Yale Centre for Environmental Law & Policy.
  17. Drought Information Satellite System. (n.d.). https://copernicusdroughtservice.fpcup.pl/
  18. Drygas, M., Nurzyńska, I., Dudek, M., & Wieliczko, B. (2024). Wspólna polityka rolna w Polsce – bilans 20-lecia członkostwa w UE i wyzwania na kolejne lata. Podsumowanie. EFRWP, IRWiR PAN. https://doi.org/10.53098/978-83-967511-4-0
  19. European Association of Remote Sensing Companies. (2024). European Earth Observation Industry Survey. https://earsc.org/2024/11/18/earsc-industry-survey-2024/
  20. Framework Partnership Agreement on Copernicus User Uptake. (n.d.). https://www.copernicus-user-uptake.eu/
  21. Gao, B.-C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3
  22. Geostatistics Portal. (n.d.). https://portal.geo.stat.gov.pl/en/home/
  23. Google Earth Engine. (n.d.). https://earthengine.google.com/
  24. Hardisky, M. A., Klemas, V., & Smart, R. M. (1983). The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing, 48(1), 77–84.
  25. Jin, H., & Eklundh, L. (2014). A physically based vegetation index for improved monitoring of plant phenology. Remote Sensing of Environment, 152, 512–525. https://doi.org/10.1016/j.rse.2014.07.010
  26. Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15(11), 91–100. https://doi.org/10.1016/0273-1177(95)00079-T
  27. Kosztra, B., Büttner, G., Hazeu, G., & Arnold, S. (2017). Updated CLC illustrated nomenclature guidelines. European Environment Agency.
  28. Local Data Bank. (n.d.). (https://bdl.stat.gov.pl),
  29. Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic information science and systems (4th ed.). Wiley.
  30. MacEachren, A. M. (1995). How maps work: Representation, visualization, and design. Guilford Press.
  31. McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  32. McMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology, 87(4), 291–300. https://doi.org/10.1016/S0168-1923(97)00027-0
  33. Móricz, Á. M., Szeremeta, D., Knaś, M., Długosz, E., Ott, P. G., Kowalska, T., & Sajewicz, M. (2018). Antibacterial potential of the Cistus incanus L. phenolics as studied with use of thin-layer chromatography combined with direct bioautography and in situ hydrolysis. Journal of Chromatography A, 1534, 170–178. https://doi.org/10.1016/j.chroma.2017.12.056
  34. Morse, S. (2011). Harnessing the power of the press with three indices of sustainable development. Ecological Indicators, 11 (6), 1681–1688. https://doi.org/10.1016/j.ecolind.2011.04.016
  35. Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Souhail Boussetta, Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, J. N., Zsoter, E., Buontempo, C., & Thépaut, J.-N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9), 4349–4383. https://doi.org/10.5194/essd-13-4349-2021
  36. National Drought Mitigation Centre. (n.d). https://www.drought.gov/topics/agriculture
  37. Ochtyra, A., Marcinkowska-Ochtyra, A., & Raczko, E. (2020). Threshold- and trend-based vegetation change monitoring algorithm based on the inter-annual multi-temporal normalized difference moisture index series: A case study of the Tatra Mountains. Remote Sensing of Environment, 249, Article 112026. https://doi.org/10.1016/j.rse.2020.112026
  38. Open Data Framework for the Baltic Sea Drainage Basin. (n.d.). https://fpcup.pl/fpcup-baltyk/
  39. SentinelHub. (n.d.). https://www.sentinel-hub.com/
  40. Yan, G., Hu, R., Luo, J., Weiss, M., Jiang, H., Mu, X., Xie, D., & Zhang, W. (2019). Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives. Agricultural and Forest Meteorology, 265, 390–411. https://doi.org/10.1016/j.agrformet.2018.11.033
  41. Żyszkowska, W., Spallek, W., & Borowicz, D. (2012). Kartografia tematyczna. PWN.
DOI: https://doi.org/10.2478/pcr-2025-0002 | Journal eISSN: 2450-6966 | Journal ISSN: 0324-8321
Language: English
Page range: 21 - 39
Submitted on: Dec 2, 2024
Accepted on: May 21, 2025
Published on: Aug 7, 2025
Published by: Polish Geographical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Anna Markowska, Karol Paradowski, published by Polish Geographical Society
This work is licensed under the Creative Commons Attribution 4.0 License.