Have a personal or library account? Click to login
Preparation of the Digital Elevation Model using open source Geographic Information Systems tools for 3D prints Cover

Preparation of the Digital Elevation Model using open source Geographic Information Systems tools for 3D prints

Open Access
|Sep 2024

References

  1. Anastasiou, A., Tsirmpas, C., Rompas, A., Giokas, K., & Koutsouris, D. (2013). 3D printing: Basic concepts mathematics and technologies. 13th IEEE International Conference on BioInfomatics and BioEngineering, Chania, Greece, 10–13 November, 1–4. https://doi.org/10.1109/BIBE.2013.6701672
  2. Chandra, S., Raj, U., Sonkar, R., Yadav, U., Srivastava, P., Sanghmitra, & Maurya, A. P. (2022). Visualization Raster Based 3D Digital Elevation Model on WEB using QGIS. International Journal of Computer Science and Mobile Applications IJCSMA, 10(5), 1–6. https://doi.org/10.5281/zenodo.6568675
  3. Chen, S., Tang, Z., Zhou, H., & Cheng, J. (2019). Extracting topographic data from online sources to generate a Digital Elevation Model for highway preliminary geometric design. Journal of Transportation Engineering, Part A: Systems, 145(4). https://doi.org/10.1061/JTEPBS.0000212
  4. Dawid, W., & Pokonieczny, K. (2020). Analysis of the possibilities of using different resolution Digital Elevation Models in the study of microrelief on the example of terrain passability. Remote Sensing, 12(24), 4146. https://doi.org/10.3390/rs12244146
  5. Galin, E., Guérin, E., Peytavie, A., Cordonnier, G., Cani, M. P., Benes, B., & Gain, J. (2019). A review of digital terrain modeling. Computer Graphics Forum, 38(2), 553–577 https://doi.org/10.1111/cgf.13657
  6. Geymen, A. (2014). Digital Elevation Model (DEM) generation using the SAR interferometry technique. Arabian Journal of Geosciences, 7, 827–837. https://doi.org/10.1007/s12517-012-0811-3
  7. Gołębiewski, P., Wiencław, P., Cimek, J., Socha, P., Pysz, D., Filipkowski, A., Stępniewski, G., Czerwińska, O., Kujawa, I., Stępień R., Kasztelanic, R., Burgs, A., & Buczyński, R. (2024). 3D soft glass printing of preforms for microstructured optical fibers. Additive Manufacturing, 79, 103899. https://doi.org/10.1016/j.addma.2023.103899
  8. Gu, D. (2016). Materials creation adds new dimensions to 3D printing. Science Bulletin, 61(22), 1718–1722. https://doi.org/10.1007/s11434-016-1191-y
  9. Guth, P. L., van Niekerk, A., Grohmann, C. H., Muller, J.-P., Hawker, L., Florinsky, I. V., Gesch, D., Reuter, H. I., Herrera-Cruz, V., Riazanoff, S., López-Vázquez, C., Carabajal, C. C., Albinet, C., & Strobl, P. (2021). Digital Elevation Models: terminology and definitions. Remote Sensing, 13(18), 3581. https://doi.org/10.3390/rs13183581
  10. Habib, M., Alzubi, Y., Malkawi, A., & Awwad, M. (2020). Impact of interpolation techniques on the accuracy of large-scale Digital Elevation Model. Open Geosciences, 12(1), 190–202. https://doi.org/10.1515/geo-2020-0012
  11. Harding, C., Hasiuk, F., & Wood, A. (2021). Touch-Terrain—3D Printable Terrain Models. ISPRS International Journal of Geo-Information, 10(3), 108. https://doi.org/10.3390/ijgi10030108
  12. Hasiuk, F. (2014). Making things geological: 3-D printing in the geosciences. GSA Today, 24(8), 28–29. https://doi.org/10.1130/GSATG211GW.1
  13. Hasiuk, F., Harding, C., Renner, A. R., & Winer, E. (2017). TouchTerrain: A simple web-tool for creating 3D-printable topographic models. Computers & Geosciences, 109, 25–31. https://doi.org/10.1016/j.cageo.2017.07.005
  14. Horowitz, S. S., & Schultz, P. H. (2014). Printing Space: using 3D printing of Digital Terrain Models in geosciences education and research. Journal of Geoscience Education, 62(1), 138–145. https://doi.org/10.5408/13-031.1
  15. MapTiler. (2024). https://www.maptiler.com
  16. Kete, P. (2016). Physical 3D map of the Planica Nordic Center, Slovenia: Cartographic Principles and Techniques Used with 3D Printing. Cartographica: The International Journal for Geographic Information and Geovisualization, 51(1), 1–11. https://doi.org/10.3138/cart.51.1.3154
  17. Lepczyk, C. A., Wedding, L. M., Asner, G. P., Pitt-man, S. J., Goulden, T., Linderman, M. A., Gang, J., & Wright, R. (2021). Advancing landscape and seascape ecology from a 2D to a 3D science. Bio-Science, 71(6), 596–608. https://doi.org/10.1093/biosci/biab001
  18. Lütjens, M., Kersten, T. P., Dorschel, B., & Tschirschwitz, F. (2019). Virtual Reality in cartography: Immersive 3D visualization of the Arctic Clyde Inlet (Canada) using Digital Elevation Models and bathymetric data. Multimodal Technologies and Interaction, 3(1), 9. https://doi.org/10.3390/mti3010009
  19. Lyu, Y., Zhao, H., Wen, X., Lin, L., Schlarb, A. K., & Shi, X. (2021). Optimization of 3D printing parameters for high–performance biodegradable materials. Journal of Applied Polymer Science, 138(32), 50782. https://doi.org/10.1002/app.50782
  20. Mach, R., & Petschek, P. (2007). Visualization of digital terrain and landscape data: a manual. Springer Berlin. https://doi.org/10.1007/978-3-540-30491-3
  21. Mesa-Mingorance, J. L., & Ariza-López, F. J. (2020). Accuracy assessment of Digital Elevation Models (DEMs): a critical review of practices of the past three decades. Remote Sensing, 12(16), 2630. https://doi.org/10.3390/rs12162630
  22. Mitasova, H., Harmon, R. S., Weaver, K. J., Lyons, N. J., & Overton, M. F. (2012). Scientific visualization of landscapes and landforms. Geomorphology, 137(1), 122–137. https://doi.org/10.1016/j.geomorph.2010.09.033
  23. Mukherjee, S., Joshi, P. K., Mukherjee, S., Ghosh, A., Garg, R. D., & Mukhopadhyay, A. (2013). Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). International Journal of Applied Earth Observation and Geoinformation, 21, 205–217. https://doi.org/10.1016/j.jag.2012.09.004
  24. Muthusamy, M., Casado, M. R., Butler, D., & Leinster, P. (2021). Understanding the effects of Digital Elevation Model resolution in urban fluvial flood modelling. Journal of Hydrology, 596, 126088. https://doi.org/10.1016/j.jhydrol.2021.126088
  25. Oswald, C. J., Rinner, C., & Robinson, A. L. (2019). Applications of 3D printing in physical geography education and urban visualization. Cartographica: The International Journal for Geographic Information and Geovisualization, 54(4), 278–287. https://doi.org/10.3138/cart.54.4.2018-0007
  26. Polidori, L., & El Hage, M. (2020). Digital Elevation Model quality assessment methods: a critical review. Remote Sensing, 12(21), 3522. https://doi.org/10.3390/rs12213522
  27. Rong, Y., Zhang, T., Zheng, Y., Hu, C., Peng, L., & Feng, P. (2020). Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry. Journal of Hydrology, 584, 124308. https://doi.org/10.1016/j.jhydrol.2019.124308
  28. Shahrubudin, N., Lee, T. C., & Ramlan, R. (2019). An overview on 3D printing technology: technological, materials, and applications. Procedia Manufacturing, 35, 1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089
  29. Solla, M., Casqueiro, C., & Cuvillo, I. (2020). Approach to generate 3D-printed terrain models using free software and open data sources: Application to military planning. Computer Applications in Engineering Education, 28(3), 477–489. https://doi.org/10.1002/cae.22211
  30. Thakar, C., Parkhe, S. S., Jain, A., Phasinam, K., Murugesan, G., & Ventayen, R. J. M. (2022). 3D printing: basic principles and applications. Materials Today: Proceedings, 51(5–8), 842–849. https://doi.org/10.1016/j.matpr.2021.06.272
  31. Wabiński, J., & Kuźma, M. (2017). Wizualizacja obszarów górskich z zastosowaniem druku 3D. Biuletyn Wojskowej Akademii Technicznej, 66(3), 45–61. http://dx.doi.org/10.5604/01.3001.0010.5390
  32. Wabiński, J., & Mościcka, A. (2019). Natural heritage reconstruction using full-color 3D printing: a case study of the valley of Five Polish Ponds. Sustainability, 11(21), 5907. https://doi.org/10.3390/su11215907
  33. Walker, M., & Humphries, S. (2019). 3D printing: applications in evolution and ecology. Ecology and Evolution, 9(7), 4289–4301. https://doi.org/10.1002/ece3.5050
  34. Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110, 442–458. https://doi.org/10.1016/j.compositesb.2016.11.034
  35. Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., & Roth, A. (2018). Accuracy assess- ment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS Journal of Photo-grammetry and Remote Sensing, 139, 171–182. https://doi.org/10.1016/j.isprsjprs.2018.02.017
  36. Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., & Bates, P. D. (2017). A high-accuracy map of global terrain elevations. Geophysical Research Letters, 44(11), 5844–5853. https://doi.org/10.1002/2017GL072874
  37. Yan, Q., Dong, H., Su, J., Han, J., Song, B., Wei, Q., & Shi, Y. (2018). A review of 3D printing technology for medical applications. Engineering, 4(5), 729–742. https://doi.org/10.1016/j.eng.2018.07.021
  38. Zhang, G., Gong, J., Li, Y., Sun, J., Xu, B., Zhang, D., Zhou, J., Guo, L., Shen, S., & Yin, B. (2020). An efficient flood dynamic visualization approach based on 3D printing and augmented reality. International Journal of Digital Earth, 13(11), 1302–1320. https://doi.org/10.1080/17538947.2019.1711210
  39. Zingaro, M., La Salandra, M., Colacicco, R., Roseto, R., Petio, P., & Capolongo, D. (2021). Suitability assessment of global, continental and national digital elevation models for geomorphological analyses in Italy. Transactions in GIS, 25(5), 2283–2308. https://doi.org/10.1111/tgis.12845
DOI: https://doi.org/10.2478/pcr-2024-0003 | Journal eISSN: 2450-6966 | Journal ISSN: 0324-8321
Language: English
Page range: 32 - 45
Submitted on: Apr 25, 2024
Accepted on: Jul 2, 2024
Published on: Sep 12, 2024
Published by: Polish Geographical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Cyprian Chwiałkowski, Adam Zydroń, published by Polish Geographical Society
This work is licensed under the Creative Commons Attribution 4.0 License.