References
- Anastasiou, A., Tsirmpas, C., Rompas, A., Giokas, K., & Koutsouris, D. (2013). 3D printing: Basic concepts mathematics and technologies. 13th IEEE International Conference on BioInfomatics and BioEngineering, Chania, Greece, 10–13 November, 1–4. https://doi.org/10.1109/BIBE.2013.6701672
- Chandra, S., Raj, U., Sonkar, R., Yadav, U., Srivastava, P., Sanghmitra, & Maurya, A. P. (2022). Visualization Raster Based 3D Digital Elevation Model on WEB using QGIS. International Journal of Computer Science and Mobile Applications IJCSMA, 10(5), 1–6. https://doi.org/10.5281/zenodo.6568675
- Chen, S., Tang, Z., Zhou, H., & Cheng, J. (2019). Extracting topographic data from online sources to generate a Digital Elevation Model for highway preliminary geometric design. Journal of Transportation Engineering, Part A: Systems, 145(4). https://doi.org/10.1061/JTEPBS.0000212
- Dawid, W., & Pokonieczny, K. (2020). Analysis of the possibilities of using different resolution Digital Elevation Models in the study of microrelief on the example of terrain passability. Remote Sensing, 12(24), 4146. https://doi.org/10.3390/rs12244146
- Galin, E., Guérin, E., Peytavie, A., Cordonnier, G., Cani, M. P., Benes, B., & Gain, J. (2019). A review of digital terrain modeling. Computer Graphics Forum, 38(2), 553–577 https://doi.org/10.1111/cgf.13657
- Geymen, A. (2014). Digital Elevation Model (DEM) generation using the SAR interferometry technique. Arabian Journal of Geosciences, 7, 827–837. https://doi.org/10.1007/s12517-012-0811-3
- Gołębiewski, P., Wiencław, P., Cimek, J., Socha, P., Pysz, D., Filipkowski, A., Stępniewski, G., Czerwińska, O., Kujawa, I., Stępień R., Kasztelanic, R., Burgs, A., & Buczyński, R. (2024). 3D soft glass printing of preforms for microstructured optical fibers. Additive Manufacturing, 79, 103899. https://doi.org/10.1016/j.addma.2023.103899
- Gu, D. (2016). Materials creation adds new dimensions to 3D printing. Science Bulletin, 61(22), 1718–1722. https://doi.org/10.1007/s11434-016-1191-y
- Guth, P. L., van Niekerk, A., Grohmann, C. H., Muller, J.-P., Hawker, L., Florinsky, I. V., Gesch, D., Reuter, H. I., Herrera-Cruz, V., Riazanoff, S., López-Vázquez, C., Carabajal, C. C., Albinet, C., & Strobl, P. (2021). Digital Elevation Models: terminology and definitions. Remote Sensing, 13(18), 3581. https://doi.org/10.3390/rs13183581
- Habib, M., Alzubi, Y., Malkawi, A., & Awwad, M. (2020). Impact of interpolation techniques on the accuracy of large-scale Digital Elevation Model. Open Geosciences, 12(1), 190–202. https://doi.org/10.1515/geo-2020-0012
- Harding, C., Hasiuk, F., & Wood, A. (2021). Touch-Terrain—3D Printable Terrain Models. ISPRS International Journal of Geo-Information, 10(3), 108. https://doi.org/10.3390/ijgi10030108
- Hasiuk, F. (2014). Making things geological: 3-D printing in the geosciences. GSA Today, 24(8), 28–29. https://doi.org/10.1130/GSATG211GW.1
- Hasiuk, F., Harding, C., Renner, A. R., & Winer, E. (2017). TouchTerrain: A simple web-tool for creating 3D-printable topographic models. Computers & Geosciences, 109, 25–31. https://doi.org/10.1016/j.cageo.2017.07.005
- Horowitz, S. S., & Schultz, P. H. (2014). Printing Space: using 3D printing of Digital Terrain Models in geosciences education and research. Journal of Geoscience Education, 62(1), 138–145. https://doi.org/10.5408/13-031.1
- MapTiler. (2024). https://www.maptiler.com
- Kete, P. (2016). Physical 3D map of the Planica Nordic Center, Slovenia: Cartographic Principles and Techniques Used with 3D Printing. Cartographica: The International Journal for Geographic Information and Geovisualization, 51(1), 1–11. https://doi.org/10.3138/cart.51.1.3154
- Lepczyk, C. A., Wedding, L. M., Asner, G. P., Pitt-man, S. J., Goulden, T., Linderman, M. A., Gang, J., & Wright, R. (2021). Advancing landscape and seascape ecology from a 2D to a 3D science. Bio-Science, 71(6), 596–608. https://doi.org/10.1093/biosci/biab001
- Lütjens, M., Kersten, T. P., Dorschel, B., & Tschirschwitz, F. (2019). Virtual Reality in cartography: Immersive 3D visualization of the Arctic Clyde Inlet (Canada) using Digital Elevation Models and bathymetric data. Multimodal Technologies and Interaction, 3(1), 9. https://doi.org/10.3390/mti3010009
- Lyu, Y., Zhao, H., Wen, X., Lin, L., Schlarb, A. K., & Shi, X. (2021). Optimization of 3D printing parameters for high–performance biodegradable materials. Journal of Applied Polymer Science, 138(32), 50782. https://doi.org/10.1002/app.50782
- Mach, R., & Petschek, P. (2007). Visualization of digital terrain and landscape data: a manual. Springer Berlin. https://doi.org/10.1007/978-3-540-30491-3
- Mesa-Mingorance, J. L., & Ariza-López, F. J. (2020). Accuracy assessment of Digital Elevation Models (DEMs): a critical review of practices of the past three decades. Remote Sensing, 12(16), 2630. https://doi.org/10.3390/rs12162630
- Mitasova, H., Harmon, R. S., Weaver, K. J., Lyons, N. J., & Overton, M. F. (2012). Scientific visualization of landscapes and landforms. Geomorphology, 137(1), 122–137. https://doi.org/10.1016/j.geomorph.2010.09.033
- Mukherjee, S., Joshi, P. K., Mukherjee, S., Ghosh, A., Garg, R. D., & Mukhopadhyay, A. (2013). Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). International Journal of Applied Earth Observation and Geoinformation, 21, 205–217. https://doi.org/10.1016/j.jag.2012.09.004
- Muthusamy, M., Casado, M. R., Butler, D., & Leinster, P. (2021). Understanding the effects of Digital Elevation Model resolution in urban fluvial flood modelling. Journal of Hydrology, 596, 126088. https://doi.org/10.1016/j.jhydrol.2021.126088
- Oswald, C. J., Rinner, C., & Robinson, A. L. (2019). Applications of 3D printing in physical geography education and urban visualization. Cartographica: The International Journal for Geographic Information and Geovisualization, 54(4), 278–287. https://doi.org/10.3138/cart.54.4.2018-0007
- Polidori, L., & El Hage, M. (2020). Digital Elevation Model quality assessment methods: a critical review. Remote Sensing, 12(21), 3522. https://doi.org/10.3390/rs12213522
- Rong, Y., Zhang, T., Zheng, Y., Hu, C., Peng, L., & Feng, P. (2020). Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry. Journal of Hydrology, 584, 124308. https://doi.org/10.1016/j.jhydrol.2019.124308
- Shahrubudin, N., Lee, T. C., & Ramlan, R. (2019). An overview on 3D printing technology: technological, materials, and applications. Procedia Manufacturing, 35, 1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089
- Solla, M., Casqueiro, C., & Cuvillo, I. (2020). Approach to generate 3D-printed terrain models using free software and open data sources: Application to military planning. Computer Applications in Engineering Education, 28(3), 477–489. https://doi.org/10.1002/cae.22211
- Thakar, C., Parkhe, S. S., Jain, A., Phasinam, K., Murugesan, G., & Ventayen, R. J. M. (2022). 3D printing: basic principles and applications. Materials Today: Proceedings, 51(5–8), 842–849. https://doi.org/10.1016/j.matpr.2021.06.272
- Wabiński, J., & Kuźma, M. (2017). Wizualizacja obszarów górskich z zastosowaniem druku 3D. Biuletyn Wojskowej Akademii Technicznej, 66(3), 45–61. http://dx.doi.org/10.5604/01.3001.0010.5390
- Wabiński, J., & Mościcka, A. (2019). Natural heritage reconstruction using full-color 3D printing: a case study of the valley of Five Polish Ponds. Sustainability, 11(21), 5907. https://doi.org/10.3390/su11215907
- Walker, M., & Humphries, S. (2019). 3D printing: applications in evolution and ecology. Ecology and Evolution, 9(7), 4289–4301. https://doi.org/10.1002/ece3.5050
- Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110, 442–458. https://doi.org/10.1016/j.compositesb.2016.11.034
- Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., & Roth, A. (2018). Accuracy assess- ment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS Journal of Photo-grammetry and Remote Sensing, 139, 171–182. https://doi.org/10.1016/j.isprsjprs.2018.02.017
- Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., & Bates, P. D. (2017). A high-accuracy map of global terrain elevations. Geophysical Research Letters, 44(11), 5844–5853. https://doi.org/10.1002/2017GL072874
- Yan, Q., Dong, H., Su, J., Han, J., Song, B., Wei, Q., & Shi, Y. (2018). A review of 3D printing technology for medical applications. Engineering, 4(5), 729–742. https://doi.org/10.1016/j.eng.2018.07.021
- Zhang, G., Gong, J., Li, Y., Sun, J., Xu, B., Zhang, D., Zhou, J., Guo, L., Shen, S., & Yin, B. (2020). An efficient flood dynamic visualization approach based on 3D printing and augmented reality. International Journal of Digital Earth, 13(11), 1302–1320. https://doi.org/10.1080/17538947.2019.1711210
- Zingaro, M., La Salandra, M., Colacicco, R., Roseto, R., Petio, P., & Capolongo, D. (2021). Suitability assessment of global, continental and national digital elevation models for geomorphological analyses in Italy. Transactions in GIS, 25(5), 2283–2308. https://doi.org/10.1111/tgis.12845