Have a personal or library account? Click to login
Methodology for creating dynamic emergency vehicle availability maps Cover

Methodology for creating dynamic emergency vehicle availability maps

Open Access
|Nov 2023

References

  1. Andersson, T., & Värbrand, P. (2007). Decision support tools for ambulance dispatch and relocation. Journal of the Operational Research Society, 58(2), 195–201. https://doi.org/10.1057/palgrave.jors.2602174
  2. Apache Hadoop. (2023). https://hadoop.apache.org/
  3. Apache Spark. (2023). https://spark.apache.org/
  4. Azizan, M. H., Lim, C. S., Hatta, W. A. L. W. M., & Teoh, S. (2013). Simulation of emergency medical services delivery performance based on real map. International Journal of Engineering and Technology, 5(3), 2620–2627.
  5. Branas, C. C., MacKenzie, E. J., & ReVelle, C. S. (2000). A trauma resource allocation model for ambulances and hospitals. Health Services Research, 35(2), 489.
  6. Budge, S., Ingolfsson, A., & Zerom, D. (2010). Empirical analysis of ambulance travel times: the case of Calgary emergency medical services. Management Science, 56(4), 716–723. https://doi.org/10.1287/mnsc.1090.1142
  7. Diller, G. P., Kempny, A., Piorkowski, A., Grübler, M., Swan, L., Baumgartner, H., Dimopoulos, K., & Gatzoulis, M. A. (2014). Choice and competition between adult congenital heart disease centers: evidence of considerable geographical disparities and association with clinical or academic results. Circ Cardiovasc Qual Outcomes, 7(2), 285–291. https://doi.org/10.1161/CIRCOUTCOMES.113.000555
  8. Fisher, R., & Lassa, J. (2017). Interactive, open source, travel time scenario modelling: tools to facilitate participation in health service access analysis. International Journal of Health Geographics, 16(1), Article 13. https://doi.org/10.1186/s12942-017-0086-8
  9. Geisberger, R., Sanders, P., Schultes, D., & Delling, D. (2008). Contraction hierarchies: faster and simpler hierarchical routing in road networks. In C. C. McGeoch. (Ed.), Experimental Algorithms. WEA 2008. Lecture Notes in Computer Science, 5038. Springer. https://doi.org/10.1007/978-3-540-68552-4_24
  10. GeoTools. (2023, July). GeoTools the open source Java GIS toolkit. https://geotools.org/
  11. Ingolfsson, A. (2013). Ems planning and management. In G. S. Zaric (Ed.), Operations Research and Health Care Policy (pp. 105–128). Springer.
  12. Karau, H., Konwinski, A., Wendell, P., & Zaharia, M. (2016). Poznajemy Sparka. Błyskawiczna analiza danych. PWN.
  13. Kozieł, G. (2014). Algorytmy wyznaczania optymalnej trasy przejazdu. Logistyka, 3, 3206–3212.
  14. Lee, E. (2014). Designing service coverage and measuring accessibility and serviceability of rural and small urban ambulance systems. Systems, 2(1), 34–53. https://doi.org/10.3390/systems2010034
  15. Lewandowicz, E., & Flisek, P. (2017). Dostępność komunikacyjna w analizach sieciowych w przestrzeniach heterogenicznych (Communication availability in network analysis in heterogeneous spaces). Roczniki Geomatyki, 15(4(79)), 375–389.
  16. Lupa, M., Chuchro, M., Sarlej, W., & Adamek, K. (2021). Emergency ambulance speed characteristics: a case study of Lesser Poland voivodeship, southern Poland. GeoInformatica, 25, 775–798. https://doi.org/10.1007/s10707-021-00447-w
  17. Lupa, M., Szombara, S., Chuchro, M., & Chrobak, T. (2017). Limits of Colour Perception in the Context of Minimum Dimensions in Digital Cartography. International Journal of Geo-Information, 6(9), 276. https://doi.org/10.3390/ijgi6090276
  18. Mitosz, M, Złomaniec, P., & Badurowicz, M. (2014). Modele matematyczne optymalizacji tras w transporcie medycznym [Mathematical models of route optimization in medical transport field]. Logistyka, 6, 7524–7533.
  19. Myers, B., Fisher, R., Nelson, N., & Belton, S. (2015). Defining remoteness from health care: integrated research on accessing emergency maternal care in Indonesia. AIMS public health, 2(3), 257–273. https://doi.org/10.3934/publichealth.2015.3.257
  20. OSRM. (2023, July). Open Source Routing Machine. github.com/Project-OSRM/osrm-backend/wiki/Running-OSRM
  21. Peleg, K., & Pliskin, J. S. (2004). A geographic information system simulation model of EMS: reducing ambulance response time. The American journal of emergency medicine, 22(3), 164–170. https://doi.org/10.1016/j.ajem.2004.02.003
  22. Piórkowski, A. (2018). Construction of a dynamic arrival time coverage map for emergency medical services. Open Geosciences, 10, 167–173. https://doi.org/10.1515/geo-2018-0013
  23. Płokita, I., Piórkowski, A., & Lupa, M. (2016). Comparative analysis of algorithms for calculating arrival times of emergency vehicles. Geoinformatica Polonica, 15, 85–91. https://doi.org/10.4467/21995923GP.16.009.5485
  24. Schmid, V. (2012). Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. European Journal of Operational Research, 219(3), 611–621. https://doi.org/10.1016/j.ejor.2011.10.043
  25. Shuib, A., & Zaharudin, Z. A. (2010). Framework of tazopt model for ambulance location and allocation problem. World Academy of Science, Engineering and Technology, 70, 678–683.
  26. Swalehe, M., & Aktas, S. G. (2016). Dynamic ambulance deployment to reduce ambulance response times using geographic information systems: A case study of Odunpazari District of Eskisehir Province, Turkey. Procedia Environmental Sciences, 36, 199–206. https://doi.org/10.1016/j.proenv.2016.09.033
  27. Terzi, O., Sisman, A., Canbaz, S., Dündar, C., & Peksen, Y. (2013). A geographic information system- based analysis of ambulance station coverage area in Samsun, Turkey. Singapore Med J, 54(11), 653–658. http://dx.doi.org/10.11622/smedj.2013228
  28. Vanderschuren, M., & McKune, D. (2015). Emergency care facility access in rural areas within the golden hour?: Western Cape case study. International Journal of Health Geographics, 14(1), 5. https://doi.org/10.1186/1476-072X-14-5
  29. Wajid, S., Nezamuddin, N., & Unnikrishnan, A. (2020). Optimizing ambulance locations for coverage enhancement of accident sites in South Delhi. Transportation Research Procedia, 48, 280–289. https://doi.org/10.1016/j.trpro.2020.08.022
  30. Westgate, B. S., Woodard, D. B., Matteson, D. S., & Henderson, S. G. (2016). Large-network travel time distribution estimation for ambulances. European Journal of Operational Research, 252(1), 322–333.
DOI: https://doi.org/10.2478/pcr-2023-0003 | Journal eISSN: 2450-6966 | Journal ISSN: 0324-8321
Language: English
Page range: 24 - 37
Submitted on: Jul 25, 2023
Accepted on: Sep 22, 2023
Published on: Nov 1, 2023
Published by: Polish Geographical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Michał Lupa, Weronika Naziemiec, Katarzyna Adamek, Mateusz Zawadzki, published by Polish Geographical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.