Have a personal or library account? Click to login
Determination and evaluation of spatio-temporal trends on the example of PM10 concentration in Poland (2000−2018) Cover

Determination and evaluation of spatio-temporal trends on the example of PM10 concentration in Poland (2000−2018)

Open Access
|Oct 2021

References

  1. Bai, K., Ma, M., Chang, N.-B., & Gao, W. (2019). Spatiotemporal trend analysis for fine particulate matter concentrations in China using high-resolution satellite-derived and ground-measured PM2.5 data. Journal of Environmental Management, 233, 530–542. https://doi.org/10.1016/j.jenvman.2018.12.07110.1016/j.jenvman.2018.12.07130594898
  2. Diop, L., Bodian, A., & Diallo, D. (2016). Spatiotemporal trend analysis of the mean annual rainfall in Senegal. European Scientific Journal, 12(12), 231. https://doi.org/10.19044/esj.2016.v12n12p23110.19044/esj.2016.v12n12p231
  3. Gao, S., Wang, Y., Shan, M., Teng, Y., Hong, N., Sun, Y., Mao, J., Ma, Z., Xiao, J., Azzi, M., Chen, L., & Zhang, H. (2020). Wind-tunnel and modelled PM10 emissions and dust concentrations from agriculture soils in Tianjin, Northern China. Aeolian Research, 42, 100562. https://doi.org/10.1016/j.aeolia.2019.10056210.1016/j.aeolia.2019.100562
  4. Gąsiorowski, J. (2015). Szeregi czasowo-przestrzenne – analiza trendu. In A. Fiedukowicz, J. Gąsiorowski, & R. Olszewski (Eds.), Wybrane metody eksploracyjnej analizy danych przestrzennych (spatial data mining) (pp. 97–104). Wydział Geodezji i Kartografii Politechniki Warszawskiej.
  5. Główny Inspektorat Ochrony Środowiska. (n.d.). Ocena jakości powietrza – bieżące dane pomiarowe. Retrieved March 2019, from http://powietrze.gios.gov.pl
  6. Główny Inspektorat Ochrony Środowiska. (2011). Analiza stanu zanieczyszczenia powietrza pyłem PM10 i PM2,5 z uwzględnieniem składu chemicznego pyłu oraz wpływu źródeł naturalnych. Zabrze.
  7. Gupta, N., Banerjee, A., & Gupta, S. K. (2021). Spatio-temporal trend analysis of climatic variables over Jharkhand, India. Earth Systems and Environment, 5(1), 71–86. https://doi.org/10.1007/s41748-021-00204-x10.1007/s41748-021-00204-x
  8. Hadi, S. J., & Tombul, M. (2018). Long-term spatio-temporal trend analysis of precipitation and temperature over Turkey. Meteorological Applications, 25(3), 445–455. https://doi.org/10.1002/met.171210.1002/met.1712
  9. Jackowska, M. (2020). Koncepcja sposobów analizy trendów szeregów czasowych zróżnicowanych przestrzennie, wraz z oceną jakości dokonywanych predykcji [Master’s thesis]. Warsaw University of Technology.
  10. Kamarehie, B., Ghaderpoori, M., Jafari, A., Karami, M., Mohammadi, A., Azarshab, K., Ghaderpoury, A., & Noorizadeh, N. (2017). Estimation of health effects (morbidity and mortality) attributed to PM10 and PM2.5 exposure using an air quality model in Bukan city, from 2015-2016 exposure using air quality model. Environmental Health Engineering and Management, 4(3), 137–142. https://doi.org/10.15171/EHEM.2017.1910.15171/EHEM.2017.19
  11. Kiersztyn, A. (2013). Analiza szeregów czasowych. https://pracownik.kul.pl/files/12167/public/analiza_szeregow_czasowych/AnalizaSzeregowCzasowychKonwersatorium.pdf
  12. Kirk, R. W., Bolstad, P. V., & Manson, S. M. (2012). Spatio-temporal trend analysis of long-term development patterns (1900–2030) in a Southern Appalachian County. Landscape and Urban Planning, 104(1), 47–58. https://doi.org/10.1016/j.landurbplan.2011.09.00810.1016/j.landurbplan.2011.09.008
  13. Kołacz, A. M. (2021). Mapa i animacja kartograficzna wybranych zanieczyszczeń powietrza na terenie Polski [Engineer’s thesis]. Warsaw University of Technology.
  14. Kyriakidis, P. C., & Journel, A. G. (1999). Geostatistical space-time models: a review. Mathematical Geology, 31(6), 651–684. https://doi.org/10.1023/A:100752842668810.1023/A:1007528426688
  15. Kyriakidis, P. C., Miller, N. L., & Kim, J. (2004). A spatial time series framework for simulating daily precipitation at regional scales. Journal of Hydrology, 297(1-4), 236–255. https://doi.org/10.1016/j.jhydrol.2004.04.02210.1016/j.jhydrol.2004.04.022
  16. Lam, N. S.-N. (1983). Spatial interpolation methods: a review. The American Cartographer, 10(2), 129–150. https://doi.org/10.1559/15230408378391495810.1559/152304083783914958
  17. Li, J., & Heap, A. D. (2008). Spatial Interpolation Methods: A Review for Environmental Scientists. Geoscience Australia, Record 2008/23. http://www.ga.gov.au/webtemp/image_cache/GA12526.pdf
  18. Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: a review. Environmental Modelling & Software, 53, 173–189. https://doi.org/10.1016/j.envsoft.2013.12.00810.1016/j.envsoft.2013.12.008
  19. Lin, Z., Mo, X., Li, H. [Hong-xuan], & Li, H. [Hai-bin] (2002). Comparison of three spatial interpolation methods for climate variables in China. Acta Geographica Sinica, 57(1), 47–56.
  20. Luo, P., He, B., Takara, K., Razafindrabe, B. H. N., Nover, D., & Yamashiki, Y. (2011). Spatiotemporal trend analysis of recent river water quality conditions in Japan. Journal of Environmental Monitoring, 13(10), 2819–2829. https://doi.org/10.1039/c1em10339c10.1039/c1em10339c21842064
  21. Maji, K. J., Dikshit, A. K., & Deshpande, A. (2017). Disability-adjusted life years and economic cost assessment of the health effects related to PM2.5 and PM10 pollution in Mumbai and Delhi, in India from 1991 to 2015. Environmental Science and Pollution Research International, 24(5), 4709–4730. https://doi.org/10.1007/s11356-016-8164-110.1007/s11356-016-8164-127981476
  22. Malska, W., & Wachta, H. (2015). Wykorzystanie modelu ARIMA do analizy szeregu czasowego. Zeszyty Naukowe Politechniki Rzeszowskiej. Elektrotechnika, 34 [292](3), 23–30.10.7862/re.2015.27
  23. Muhire, I., & Ahmed, F. (2015). Spatio-temporal trend analysis of precipitation data over Rwanda. South African Geographical Journal, 97(1), 50–68. https://doi.org/10.1080/03736245.2014.92486910.1080/03736245.2014.924869
  24. Mukherjee, A., & Agrawal, M. (2017). World air particulate matter: Sources, distribution and health effects. Environmental Chemistry Letters, 15(2), 283–309. https://doi.org/10.1007/s10311-017-0611-910.1007/s10311-017-0611-9
  25. Shumway, R. H., & Stoffer, D. S. (2017a). Characteristics of time series. In R. H. Shumway & D. S. Stoffer (Eds.), Springer Texts in Statistics. Time Series Analysis and Its Applications (pp. 1–44). Springer International Publishing.10.1007/978-3-319-52452-8_1
  26. Shumway, R. H., & Stoffer, D. S. (2017b). Time series regression and exploratory data analysis. In R. H. Shumway & D. S. Stoffer (Eds.), Springer Texts in Statistics. Time Series Analysis and Its Applications (pp. 45–74). Springer International Publishing.10.1007/978-3-319-52452-8_2
  27. Ścibor, M., Bokwa, A., & Balcerzak, B. (2020). Impact of wind speed and apartment ventilation on indoor concentrations of PM10 and PM2.5 in Kraków, Poland. Air Quality, Atmosphere & Health, 13(5), 553–562. https://doi.org/10.1007/s11869-020-00816-810.1007/s11869-020-00816-8
  28. Talchabhadel, R., Karki, R., Thapa, B. R., Maharjan, M., & Parajuli, B. (2018). Spatio-temporal variability of extreme precipitation in Nepal. International Journal of Climatology, 38(11), 4296–4313. https://doi.org/10.1002/joc.566910.1002/joc.5669
  29. Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234. https://doi.org/10.2307/14314110.2307/143141
  30. Wang, Y., Liu, Y., Struthers, J., & Lian, M. (2021). Spatiotemporal characteristics of the covid-19 epidemic in the United States. Clinical Infectious Diseases, 72(4), 643–651. https://doi.org/10.1093/cid/ciaa93410.1093/cid/ciaa934745442432640020
  31. World Health Organization (2013). Review of evidence on health aspects of air pollution: REVIHAAP project: technical report (No. WHO/EURO: 2013-2663-42419-58845). World Health Organization. Regional Office for Europe.
DOI: https://doi.org/10.2478/pcr-2021-0004 | Journal eISSN: 2450-6966 | Journal ISSN: 0324-8321
Language: English
Page range: 37 - 48
Submitted on: Jun 21, 2021
Accepted on: Aug 13, 2021
Published on: Oct 5, 2021
Published by: Polish Geographical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Malwina Jackowska, Anna Fiedukowicz, Jędrzej Gąsiorowski, published by Polish Geographical Society
This work is licensed under the Creative Commons Attribution 4.0 License.