Have a personal or library account? Click to login
Geomorphological modelling and mapping of the Peru-Chile Trench by GMT Cover

Geomorphological modelling and mapping of the Peru-Chile Trench by GMT

Open Access
|Feb 2020

References

  1. Amin H., Sjöberg L.E., Bagherbandi M., 2019, A global vertical datum defined by the conventional geoid potential and the Earth ellipsoid parameters. “Journal of Geodesy” Vol. 93, no. 10, pp. 1943–1961. https://doi.org/10.1007/s00190-019-01293-310.1007/s00190-019-01293-3
  2. Angel M.V., 1982, Ocean trench conservation. “Environmentalist” Vol. 2, pp.1–17.10.1016/S0251-1088(82)80001-6
  3. Behrmann J.S., Leslie S.D., Cande S.C., 1994, ODP Leg 141 Scientific Party. Tectonics and geology of spreading ridge subduction at the Chile Triple Junction: A synthesis of results along from Leg 141 of the Ocean Drilling Program. “Geologische Rundschau” Bd. 83, pp. 832–852.10.1007/BF00251080
  4. Bello-González J.P., Contreras-Reyes E., Arriagada C., 2018, Predicted path for hotspot tracks off South America since Paleocene times: Tectonic implications of ridge-trench collision along the Andean margin. “Gondwana Research” Vol. 64, pp. 216–234. DOI:10.1016/j.gr.2018.07.008+10.1016/j.gr.2018.07.008
  5. Cande S.C., Leslie R. B., 1986, Late Cenozoic tectonics of the southern Chile Trench. “Journal of Geophysical Research” Vol. 91, pp. 471–496.10.1029/JB091iB01p00471
  6. Cecioni A., Pineda V., 2010, Geology and geomorphology of natural hazards and human-induced disasters in Chile. “Developments in Earth Surface Processes” Vol. 13, pp. 379–413. DOI: 10.1016/S0928-2025(08)10018-910.1016/S0928-2025(08)10018-9
  7. Cifuentes I.L.,1989, The 1960 Chilean earthquakes. “Journal of Geophysical Research” Vol. 94, pp. 665–680.10.1029/JB094iB01p00665
  8. Clark M.R., Rowden A.A., Schlacher R., Williams A., Consalvey M., 2010, The ecology of seamounts: structure, function, and human impacts. “Annual Review of Marine Science” Vol. 2, pp. 253–278. DOI: 110.1146/annurev-marine-120308-08110910.1146/annurev-marine-120308-08110921141665
  9. Contreras-Reyes E., Carrizo D., 2011, Control of high oceanic features and subduction channel on earthquake ruptures along the Chile-Peru subduction zone. “Physics of the Earth and Planetary Interiors” Vol. pp. 186, 49–58. DOI: 10.1016/j.pepi. 2011.03.00210.1016/j.pepi.2011.03.002
  10. Contreras-Reyes E., Jara J., Maksymowicz A., Weinrebe W., 2013, Sediment loading at the southern Chilean trench and its tectonic implications. “Journal of Geodynamics” Vol. 66, pp. 134–145. DOI: 10.1016/j.jog.2013.02.00910.1016/j.jog.2013.02.009
  11. Contreras-Reyes E., Osses A., 2010, Lithospheric flexure modeling seaward of the Chile trench: implications for oceanic plate weakening in the Trench Outer Rise region. “Geophysical Journal International” Vol. 182, no.1, pp. 97–112. DOI: 10.1111/j.1365-246X.2010.04629.x10.1111/j.1365-246X.2010.04629.x
  12. Contreras-Reyes E., Flueh E.R., Grevemeyer I., 2010, Tectonic control on sediment accretion and subduction off south-central Chile: implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes. “Tectonics” Vol. 29, no. 6. DOI: 10.1029/2010TC00273410.1029/2010TC002734
  13. Contreras-Reyes E., Grevemeyer I., Flueh E.R.M., Scherwath M., Heesemann M., 2007, Alteration of the subducting oceanic lithosphere at the southern central Chile trench-outer rise. “Geochemistry Geophysics Geosystems” Vol. 8, Q07003. DOI: 10. 1029/2007GC001632.10.1029/2007GC001632
  14. Contreras-Reyes E., Grevemeyer I., Flueh E.R., Reichert C., 2008, Upper lithospheric structure of the subduction zone offshore southern Arauco Peninsula, Chile at -38°S. “Journal of Geophysical Research” Vol. 113, B07303, DOI: 10.1029/2007JB005569.10.1029/2007JB005569
  15. Costello M.J., Berghe, van den E., 2006, Ocean bio-diversity informatics: a new era in marine biology research and management. “Marine Ecology – Progress Series” No. 316, pp. 203–214. DOI: 10.3354/meps31620310.3354/meps316203
  16. Divins D., 2003, Total sediment thickness of the world’s oceans and marginal seas. Boulder, CO. NOAA National Geophysical Data Center. http://www.ngdc.noaa.gov/mgg/sedthick/sedthick.html
  17. Fisher R.L., Raitt R.W., 1962, Topography and structure of the Peru-Chile trench. “Deep-Sea Research” Vol. 9, pp. 424–443.10.1016/0011-7471(62)90094-3
  18. Gambi C., Vanreusel A., Danovaro R., 2003, Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean). “Deep-Sea Research I” No. 50, pp. 103–117.10.1016/S0967-0637(02)00143-7
  19. Gauss F.W., 1828, Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen und Altona durch Beobachtungen am Ramsdenschen Zenithsector. Göttingen: Vanderschoeck und Ruprecht, pp. 48–50.
  20. Geersen J., 2019, Sediment-starved trenches and rough subducting plates are conducive to T tsunami earthquakes. “Tectonophysics” No. 762, pp. 28–44. DOI: 10.1016/j.tecto.2019.04.02410.1016/j.tecto.2019.04.024
  21. Geersen J., Voelker D., Behrmann J.H., 2018, Oceanic trenches. In: Submarine Geomorphology. Cham: Springer, pp. 409–424.10.1007/978-3-319-57852-1_21
  22. Hayes D.E.,1966, A geophysical investigation of the Peru-Chile Trench. “Marine Geology” Vol. 4, no. 5, pp. 309–351. DOI: 10.1016/0025-3227(66)90038-710.1016/0025-3227(66)90038-7
  23. Heuret A., Lallemand S., 2005, Plate motions, slab dynamics and back-arc deformation. “Physics of the Earth and Planetary Interiors” Vol. 149, pp. 31–51. DOI: 10.1016/j.pepi.2004.08.02210.1016/j.pepi.2004.08.022
  24. Kaus B., Becker T.W., 2008, A numerical study on the effects of surface boundary condition and rheology on slab dynamics. “Bollettino di Geofisica Teorica ed Applicata” Vol. 49, no. 2, pp. 177–181.
  25. Kincaid C., Olson P., 1987, An experimental study of subduction and slab migration. “Journal of Geophysical Research” Vol. 92, pp. 13832–13840.10.1029/JB092iB13p13832
  26. Lacey N.C., Rowden A.A., Clark M.R., Kilgallen N.M., Linley T., Mayor D.J., Jamieson A.J., 2016, Community structure and diversity of scavenging amphipods from bathyal to hadal depths in three South Pacific Trenches. “Deep-Sea Research I” No. 111, pp. 121–137. DOI: 10.1016/j.dsr.2016.02.01410.1016/j.dsr.2016.02.014
  27. Lemenkova P., 2018a, R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. “Journal of Marine Technology and Environment” Vol. 2, pp. 35–42. DOI: 10.6084/m9.figshare. 743416710.6084/m9.figshare.7434167
  28. Lemenkova P., 2018b, Factor analysis by R programming to assess variability among environmental determinants of the Mariana Trench. “Turkish Journal of Maritime and Marine Sciences” Vol. 4, pp. 146–155. DOI: 10.6084/m9.figshare.735820710.6084/m9.figshare.7358207
  29. Lemenkova P. 2019a, Statistical analysis of the Mariana Trench geomorphology using R programming language. “Geodesy and Cartography” Vol. 45, no. 2, pp. 57–84. DOI: 10.3846/gac.2019.378510.3846/gac.2019.3785
  30. Lemenkova P., 2019b, An empirical study of R applications for data analysis in marine geology. “Marine Science and Technology Bulletin” Vol. 8, no. 1, pp. 1–9. DOI: 10.33714/masteb.48667810.33714/masteb.486678
  31. Lemenkova P., 2019c., Processing oceanographic data by Python libraries NumPy, SciPy and Pandas. “Aquatic Research” Vol. 2, pp. 73–91. DOI: 10.3153/AR1900910.3153/AR19009
  32. Lemenkova P., 2019d, Testing linear regressions by StatsModel Library of Python for oceanological data interpretation. “Aquatic Sciences and Engineering” Vol. 34, pp. 51–60. DOI: 10.26650/ASE201954701010.26650/ASE2019547010
  33. Lemenkova P., 2019e, Numerical data modelling and classification in marine geology by the SPSS statistics. “International Journal of Engineering Technologies” Vol. 5, no. 2, pp. 90–99. DOI: 10.6084/m9.figshare.879694110.6084/m9.figshare.8796941
  34. Manea V.C., Manea M., Ferrari L., Orozco-Esquivel T., Valenzuela R.W., Husker A., Kostoglodov V., 2017, A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile. “Tectonophysics” No. 695, pp. 27–52. DOI: 10.1016/j. tecto.2016.11.03710.1016/j.tecto.2016.11.037
  35. Mather A.E., Hartley A.J., Griffiths J.S., 2014, The giant coastal landslides of Northern Chile: Tectonic and climate interactions on a classic convergent plate margin. “Earth and Planetary Science Letters” No. 388, pp. 249–256. DOI: 10.1016/j. epsl.2013.10.01910.1016/j.epsl.2013.10.019
  36. Oakley A.J., Taylor B., Moore G.F., 2008, Pacific plate subduction beneath the central Mariana and Izu--Bonin fore-arcs: new insights from an old margin. “Geochemistry Geophysics Geosystems” Vol. 9. DOI: 10.1029/2007GC00182010.1029/2007GC001820
  37. Osborn K.J., Haddock S.H.D., Pleijel F., Madin L.P., Rouse G.W., 2009, Deep-sea, swimming worms with luminescent ‘bombs’. “Science” Vol. 325, 964. DOI: 10.1126/science.117248810.1126/.1172488
  38. Prince R.A., Kulm L.D., 1975, Crustal rupture and the initiation of imbricate thrusting in the Peru-Chile Trench. “GSA Bulletin” Vol. 86, no. 12, pp. 1639–1653.10.1130/0016-7606(1975)86<;1639:CRATIO>2.0.CO;2
  39. Ranero C.R., Villaseor A., Morgan Ph.J., Wdinrebe W., 2005, Relationship between bending-faulting at trenches and intermediate-depth seismicity. “Geo-chemistry, Geophysics, Geosystems” Vol. 6. DOI: 10.1029/2005GC00099710.1029/2005GC000997
  40. Robison B.H., 2004, Deep pelagic biology. “Journal of Experimental Marine Biology and Ecology” No. 300, pp. 253–272. DOI: 10.1016/j.jembe.2004.01.01210.1016/j.jembe.2004.01.012
  41. Robison B.H., 2009, Conservation of deep pelagic bio-diversity. “Conservation Biology” Vol. 23, pp. 847–858. DOI: 10.1111/j.1523-1739.2009.01219.x10.1111/j.1523-1739.2009.01219.x
  42. Sandwell D.T., Müller R.D., Smith W.H.F., Garcia E., Francis R., 2014, New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. “Science” Vol. 346, no. 6205, pp. 65–67.10.1126/science.1258213
  43. Sarmiento-Rojas L.F., Van Wess J.D., Cloetingh S., 2006, Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: inferences from tectonic models. “Journal of South American Earth Sciences” Vol. 21, pp. 383–411.10.1016/j.jsames.2006.07.003
  44. Schellart W.P., Lister G.S., Toy V.G., 2006, A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. “Earth Review” Vol. 76, pp. 191–233.10.1016/j.earscirev.2006.01.002
  45. Schenke H.W., Lemenkova P., 2008, Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der bathymetrischen Petschora-See Daten in der Petschora-See. “Hydrographische Nachrichten” Bd. 25, H. 81, pp. 16–21. DOI: 10.6084/m9.fig-share.743553810.6084/m9.fig-share.7435538
  46. Smith W.H.F., 1993, On the accuracy of digital bathy-metric data. “Journal of Geophysical Research” Vol. 98, no. B6, pp. 9591–9603.10.1029/93JB00716
  47. Smith W.H.F., Sandwell D.T., 1995, Marine gravity field from declassified Geosat and ERS-1 altimetry, “EOS Transactions American Geophysical Union” Vol. 76, Fall Mitting Suppl, F156.
  48. Stewart H.A., Jamieson A.J., 2018, Habitat heterogeneity of hadal trenches: Considerations and implications for future studies. “Progress in Oceanography” Vol. 161, pp. 47–65. DOI: 10.1016/j.pocean.2018.01.00710.1016/j.pocean.2018.01.007
  49. Suetova I.A., Ushakova L.A., Lemenkova P., 2005, Geoinformation mapping of the Barents and Pechora Seas. “Geography and Natural Resources” Vol. 4, pp. 138–142. DOI: 10.6084/m9.figshare.743553510.6084/m9.figshare.7435535
  50. Thornburg T.M., Kulm, L.D., 1990, Submarine-fan development in the southern Chile Trench: a dynamic interplay of tectonics and sedimentation. “Geological Society of America. Bulletin.” Vol. 102, pp. 1658–1680.10.1130/0016-7606(1990)102<;1658:SFDITS>2.3.CO;2
  51. Völker D., Reichel T., Wiedicke M., Heubeck C., 2008, Turbidites deposited on Southern Central Chilean seamounts: Evidence for energetic turbidity currents. “Marine Geology” Vol. 251, no. 1-2, pp. 15–31. DOI: 10.1016/j.margeo.2008.01.00810.1016/j.margeo.2008.01.008
  52. Wahr J., Molenaar M., Bryan F., 1998, Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. “Journal of Geophysical Research” Vol. 103, pp. 30205–30229.10.1029/98JB02844
  53. Wessel P., Smith W.H.F., 1998, New, improved version of the generic mapping tools released. “EOS Transactions American Geophysical Union” Vol. 79, p. 579.10.1029/98EO00426
  54. Wessel P., Smith W.H.F., Scharroo R., Luis J.F., Wobbe F., 2013, Generic mapping tools: improved version released. “EOS Transactions American Geophysical Union” Vol. 94, no. 45, pp. 409–410. DOI: 10.1002/2013EO45000110.1002/2013EO450001
  55. Wessel P., Smith W.H.F., 2018, The generic mapping tools. Version 4.5.18 Technical reference and cookbook (Computer software manual). U.S.A.
  56. Wessel P., Smith W.H.F., Scharroo R., Luis J., Wobbe F., 2019, The generic mapping tools. GMT man pages. Release 5.4.5 (Computer software manual). U.S.A.
  57. Wessel P., Watts A.B., 1988, On the accuracy of marine gravity measurements. “Journal of Geophysical Research” Vol. 93, pp. 393–413.10.1029/JB093iB01p00393
  58. Yang A., Fu Y., 2018, Estimates of effective elastic thickness at subduction zones. “Journal of Geo-dynamics” No. 117, pp. 75–87. DOI: 10.1016/j. jog.2018.04.00710.1016/j.jog.2018.04.007
  59. Yoshida M., 2017, Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems. “Physics of the Earth and Planetary Interiors” No. 268, pp. 35–53. DOI: 10.1016/j. pepi.2017.05.00410.1016/j.pepi.2017.05.004
  60. Zeigler J.M., Athearn W.D., Small H.,1957, Profiles across the Peru-Chile Trench. “Deep-Sea Research” Vol. 4, pp. 238–249. DOI: 10.1016/0146-6313(56)90056-910.1016/0146-6313(56)90056-9
DOI: https://doi.org/10.2478/pcr-2019-0015 | Journal eISSN: 2450-6966 | Journal ISSN: 0324-8321
Language: English
Page range: 181 - 194
Submitted on: Oct 2, 2019
Accepted on: Dec 9, 2019
Published on: Feb 1, 2020
Published by: Polish Geographical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Polina Lemenkova, published by Polish Geographical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.