Have a personal or library account? Click to login

References

  1. Cojocaru A., Isopescu D. N., Maxineasa S. G., Petre S. G. (2023), Assessment of Thermal and Mechanical Properties of Cement-Based Materials—Part 1: Crumb Rubber Concrete. Buildings 2023, 13, 324
  2. Lupu M. L., Isopescu D. N., Tuns I., Baciu, I.-R., Maxineasa S. G. (2021), Determination of Physicomechanical Characteristics of the Cement Mortar with Added Fiberglass Waste Treated with Hydrogen Plasma. Materials 2021, 14, 1718
  3. Petre S. G., Isopescu D. N., Pruteanu M., Cojocaru A. (2022), Effect of Exposure to Environmental Cycling on the Thermal Conductivity of Expanded Polystyrene. Materials 2022, 15, 6921
  4. Khan K., Ahmad W., Ami, M. N., Nazar S. (2022), Nano-silica-modified concrete: A bibliographic analysis and comprehensive review of material properties. Nanomaterials 2022, 12(12), 1989
  5. Markiv T., Sobol K., Franus M., Franus W. (2016), Mechanical and durability properties of concrete incorporating natural zeolite. Arch. Civil Mech. Eng. 2016, 16 (4), 554–562
  6. El Mir A., (2018) Influence of Additives on the Porosity-Related Properties of SelfCompacting concrete. Ph.D. thesis, Budapest University of Technology and Economics, Faculty of Civil Engineering
  7. Kimball Suzette M. (2016), Menial Commodity Summaries 2016. Department of the Interior, U.S. Geological Survey 2016; 1–1202
  8. Ragul P., Naga Theera Hari M., Arunachelam N., Chellapandian M. (2022), An experimental study on the partial replacement of fine aggregate with perlite in cement concrete. Materials Today 2022, 68, 1219-1224
  9. Pramusanto P., Nurrochman A., Mamby H. E., Nugraha P. (2020), High strength lightweight concrete with expandable perlite as the aggregate. IOP Conf. Series: Materials Science and Engineering 2020, 830, 042040
  10. Yu L. H., Ou H., Lee L. L. (2003), Investigation on pozzolanic effect of perlite powder in concrete, Cem. Concr. Res. 2003, 33, 73–76
  11. Alyousef R., Benjeddou O., Soussi C., Khadimallah M. A., Jedidi M. (2019), Experimental study of new insulation lightweight concrete block floor based on perlite aggregate, natural sand, and sand obtained from marble waste, Adv. Mater. Sci. Eng. 2019
  12. Adhikary S. K., Ashish D. K., Sharma H., Patel J., Rudžionis Z., Al-Ajamee M., Thomas B. S., Khatib J. M. (2022), Lightweight self-compacting concrete: A review, Resources, Conservation & Recycling Advances 2022, Volume 15, 200107
  13. Hamidi F., Valizadeh A., Aslani F. (2022), The effect of scoria, perlite and crumb rubber aggregates on the fresh and mechanical properties of geopolymer concrete, Structures 2022, Volume 38, 895-909
  14. Nematollahi B., Ranade R., Sanjayan J., Ramakrishnan S. (2017), Thermal and mechanical properties of sustainable lightweight strain hardening geopolymer composites, Arch. Civ. Mech. Eng. 2017,17, 55–64
  15. Junaid M. F., ur Rehman Z., Kuruc M., Medveď I., Bačinskas D., Čurpek J., Čekon M., Ijaz N., Ansari W. S. (2022), Lightweight concrete from a perspective of sustainable reuse of waste byproducts, Construction and Building Materials 2022, Volume 319, 126061
  16. Kapeluszna E., Kotwica L., Pichór W., Nocuń-Wczelik W. (2020), Cement-based composites with waste expanded perlite - Structure, mechanical properties and durability in chloride and sulphate environments, Sustainable Materials and Technologies 2020, Volume 24, e00160
  17. Mladenovic A., Suput J. S., Ducman V., Skapin, A. S. (2004), Alkali-silica reactivity of some frequently used lightweight aggregates. Cem Concr Res 2004, 34, 1809–16
  18. Sodeyama K., Sakka Y., Kamino Y. (1999), Preparation of fine expanded perlite. J. Mater. Sci. 1999, 34, 2461–2468
  19. Demirbog˘a R., Gül R. (2003) The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. Concr. Res. 2003, 33, 723–727
  20. Topçu I. B., Isıkdag˘ B. (2008), Effect of expanded perlite aggregate on the properties of lightweight concrete. J. Mater. Process. Technol. 2008, 204, 34–38
  21. Sengul O., Zaizi S., Karaosmanogu F., Tasdemir M. A. (2011), Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight c oncrete. Energy Build. 2011, 43, 671–676
  22. Kramar D., Bindiganavile V. (2013), Impact response of lightweight mortars containing expanded perlite. Cement Concr. Compos. 2013, 37, 205–214
  23. Lanzón M., García-Ruiz P. A. (2008), Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Constr. Build. Mater. 2008, 22, 1798–1806
  24. Silva L. M., Ribeiro R. A., Labrincha J. A., Ferreira V. M. (2010), Role of lightweight fillers on the properties of a mixed-binder mortar. Cement Concr. Compos. 2010, 32, 19–24
  25. Oktay H., Yumrutas R., Akpolat A. (2015), Mechanical and thermophysical properties of lightweight aggregate concretes. Constr. Build. Mater. 2015, 96, 217–225
  26. Jedidi M., Benjeddou O., Soussi Ch. (1015), Effect of Expanded Perlite Aggregate Dosage on Properties of Lightweight Concrete. Jordan J. Civ. Eng. 2015, 9, 278–291
  27. Demirboǧa R., Gül R. (2003), Thermal conductivity and compressive strength of expanded perlite aggregate concrete with mineral admixtures. Energy Build. 2003, 35, 1155–1159
  28. Polat R., Demirbog˘a R., Khushefati W. H. (2015), Effects of nano and micro size of CaO and MgO, nano-clay and expanded perlite aggregate on the autogenous shrinkage of mortar. Constr. Build. Mater. 2015, 81, 268–275
  29. Sun D., Wang L. 92015), Utilization of paraffin/expanded perlite materials to improve mechanical and thermal properties of cement mortar. Constr. Build. Mater. 2015, 101, 791–796
  30. Isıkdag˘ B. (2015), Characterization of lightweight ferrocement panels containing expanded perlite-based mortar. Constr. Build. Mater. 2015, 8, 15–23
  31. Yoon J. Y., Kim J. H., Hwang Y. Y., Shin D. K. (2015), Lightweight concrete produced using a two-stage casting process. Materials (Basel) 2015, 8 (4), 1384–1397
  32. Oktay H., Yumruts R., Akpolat A. (2015), Mechanical and thermophysical properties of lightweigh aggregate concretes. Constr. Build. Mater. 2015, 96, 217–225
  33. Türkmen I., Kantarci A. (2006), Effects of expanded perlite aggregate and different curing conditions on the drying shrinkage of self-compacting concrete. Indian J. Eng. Mater. Sci. 2006, 13, 247–252
  34. Türkmen I., Kantarcı A. (2007), Effects of expanded perlite aggregate and different curing conditions on the physical and mechanical properties of self-compacting concrete. Build. Environ. 2007, 42, 2378–2383
  35. Karakoç M. B., Denirboga R. (2010), HSC with expanded perlite aggregate at wet and dry curing conditions. J. Mater. Civil Eng. (ASCE) 2010, 22 (12), 1251–1259
  36. Sriwattanapong M., Sinsiri T., Pantawee S., Chindaprasirt P. (2013), A study of lightweight concrete admixed with perlite. Suranarre J. Sci. Technol. 2013, 20 (3), 227–234
  37. SOMET 2114 Thermal properties analyzer, User’s Guide, version 1.57, Applied Precision, https://www.appliedp.com/download/manual/isomet2114_ug_en.pdf
  38. Baciu I. R. Contributions to the study of the green roofs. (2022) Ph.D. thesis,” Gheorghe Asachi” Technical University, Iași, Romania, 2022, Chapter 3, 31-53
  39. SR EN 12390-3, Test on hardened concrete. Part 1, 2 & 3, 2019
Language: English
Page range: 1 - 9
Published on: Feb 14, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Alexandra Ungureanu, Dorina Nicolina Isopescu, Sebastian-George Maxineasa, Ioana-Roxana Vizitiu-Baciu, Sergiu-George Petre, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.