References
- [1] 2018 IPCC Report, https://www.ipcc.ch/sr15/
- [2]. D. R. Easterling et al. (1997), Maximum and minimum temperature trends for the globe, Science, 277(5324), pp. 364–367
- [3]. R. Heino et al. (1999), Progress in the study of climatic extremes in northern and central Europe, Climatic Change, 42, pp. 151–181
- [4]. C. A. Mocanu-Vargancsik, A. Barbulescu (2019), Study of the Temperature’s Evolution Trend on the Black Sea Shore at Constanta, IOP Conference Series: Journal of Physics Conference Series, no. 1297, art. 012010. doi:10.1088/1742-6596/1297/1/01201010.1088/1742-6596/1297/1/012010
- [5]. C. K. Folland, et al. (2001), Observed climate variability and change, in Climate Change 2001: The Scientific Basis, Cambridge University Press, New York, pp. 108–109
- [6]. R. S. Vose, D. R. Easterling, B. Gleason (2005), Maximum and minimum temperature trends for the globe: An update through 2004, Geographical Research Letters, 32(23), L23822, doi:10.1029/2005GL02437910.1029/2005GL024379
- [7]. C. Maftei, A. Bărbulescu (2008), Statistical Analysis of Climate Evolution in Dobrudja Region, Proceedings of the World Congress on Engineering 2008, vol II, WCE 2008, July 2 - 4, 2008, London, U.K, pp.1082-1087
- [8]. A. Bărbulescu (2016), Models for temperature evolution in Constanta area (Romania), Romanian Journal of Physics, 61(3-4), pp. 676 - 686
- [9]. A. Bărbulescu (2016), Modeling temperature evolution. Case study, Romanian Reports in Physics, 68(2), pp. 788 - 798
- [10]. A. Bărbulescu, J. Deguenon (2015), About the variations of precipitation and temperature evolution in the Romanian Black Sea Littoral, Romanian Reports in Physics, 67(2), pp. 625 – 637.
- [11]. A. Bărbulescu, C. Maftei (2015), Modeling the climate in the area of Techirghiol Lake (Romania), Romanian Journal of Physics, 60(7-8), pp.1163 – 1170
- [12]. Europen Climate Assessment & DataSet, https://www.ecad.eu/
- [13]. D. Kwiatkowski, P.C.B. Phillips, P. Schmidt, Y. Shin (1992), Testing the null hypothesis of stationarity against the alternative of a unit root, Journal of Econometrics, 54(1–3), pp. 159–178
- [14]. A. N. Pettitt (1979), A non-parametric approach to the change point problem, Journal of the Royal Statistical Society Series C, Applied Statistics, 28, pp. 126-135.
- [15]. B. Mandelbrot (1977), Fractals: form, chance and dimension, W.H. Freeman and co., San Francisco
- [16]. L. S. Leibovitch (1998), Fractal and Chaos Simplified for Life Sciences, Oxford University Press, New York
- [17]. K. J. Falconer (1990), Fractal Geometry: Mathematical Foundations and Applications, Wiley, New York10.2307/2532125
- [18]. P. Hall, A. Wood (1993), On the performance of box-counting estimators of fractal dimension, Biometrika, 80, pp. 246–252
- [19]. S. Davies, P. Hall (1999), Fractal analysis of surface roughness by using spatial data, Journal of the Royal Statistical Society, Series B, vol. 61 (1999), pp. 3–37
- [20]. M. G. Genton (1998), Highly robust variogram estimation, Mathematical Geology, 30, (pp. 213–221
- [21]. T. Gneiting, H. Sevcikova, D. B. Percival (2012), Estimators of fractal dimension: Assessing the smoothness of time series and spatial data, Statistical Science, 27(2), pp. 247-277 (Version as technical report available at https://stat.uw.edu/sites/default/files/files/reports/2010/tr577.pdf)10.1214/11-STS370
- [22]. N. Ahmed, T. Natarajan, K. R. Rao (1994), Discrete cosine transform, IEEE Transactions on Computers, 23, 90–93.10.1109/T-C.1974.223784
- [23]. G. Strang (1999), The discrete cosine transform, SIAM Review, 41, pp. 135–147.