Have a personal or library account? Click to login
Innovative approaches to productivity monitoring: Integrating work sampling and electronic performance monitoring Cover

Innovative approaches to productivity monitoring: Integrating work sampling and electronic performance monitoring

Open Access
|Jul 2025

References

  1. Adrian, J. J. (2004). Construction Productivity: Measurement and Improvement. Stipes. Available at https://books.google.pt/books?id=1kJ_QwAACAAJ.
  2. Akhavian, R., & Behzadan, A. H. (2016). Smartphone-based construction workers’ activity recognition and classification. Automation in Construction, 71, pp. 198-209. doi: 10.1016/j. autcon.2016.08.015
  3. Alder, G. S. (2001). Employee reactions to electronic performance monitoring: A consequence of organizational culture. The Journal of High Technology Management Research, 12(2), pp. 323-342. doi: 10.1016/S1047-8310(01)00042-6
  4. Altheimer, J., & Schneider, J. (2024). Smart-watch-based construction worker activity recognition with hand-held power tools. Automation in Construction, 167, p. 105684. doi: 10.1016/j.autcon.2024.105684
  5. Aziz, R. F., & Hafez, S. M. (2013). Applying lean thinking in construction and performance improvement. Alexandria Engineering Journal, 52(4), pp. 679-695. doi: 10.1016/j. aej.2013.04.008
  6. Calvetti, D., et al. (2022). Construction tasks electronic process monitoring: Laboratory circuit-based simulation deployment. Buildings, 12(8), p. 1174. doi: 10.3390/buildings12081174
  7. Calvetti, D., & Ferreira, M. L. R. (2018). Agile methodology to performance measure and identification of impact factors in the labour productivity of industrial workers. U.Porto Journal of Engineering, 4(2), pp. 49-64. doi: 10.24840/2183-6493_004.002_0005
  8. Calvetti, D., Goncalves, M., Vahl, F., Meda, P., & Sousa, H. de. (2021a). Labour productivity as a means for assessing environmental impact in the construction industry. Environmental Engineering and Management Journal, 20(5), pp. 781-790. doi: 10.30638/eemj.2021.073
  9. Calvetti, D., Mêda, P., et al. (2021b) Mechanization of construction tasks: Level assessment and craft workforce awareness. In: 2021 European Conference on Computing in Construction, pp. 342-349. doi: 10.35490/EC3.2021.172.
  10. Cheng, T., et al. (2013). Automated task-level activity analysis through fusion of real time location sensors and worker’s thoracic posture data. Automation in Construction, 29, pp. 24-39. doi: 10.1016/j.autcon.2012.08.003
  11. Cheng, M.-Y., Khitam, A. F. K., & Tanto, H. H. (2023). Construction worker productivity evaluation using action recognition for foreign labor training and education: A case study of Taiwan. Automation in Construction, 150, p. 104809. doi: 10.1016/j. autcon.2023.104809
  12. Cheng, T., & Teizer, J. (2013). Real-time resource location data collection and visualization technology for construction safety and activity monitoring applications. Automation in Construction, 34, pp. 3-15. doi: 10.1016/j.autcon.2012.10.017
  13. Chen, X., & Yu, Y. (2024). Automatic repetitive action counting for construction worker ergonomic assessment. Automation in Construction, 167, p. 105726. doi: 10.1016/j. autcon.2024.105726
  14. Costella, M. F., et al. (2018). Proposal and evaluation of a method to implement the lean construction principles. Brazilian Journal of Operations & Production Management, 15(4), pp. 545-557. doi: 10.14488/BJOPM.2018.v15.n4.a8
  15. Daoud, A. O., El Hefnawy, M., & Wefki, H. (2023). Investigation of critical factors affecting cost overruns and delays in Egyptian mega construction projects. Alexandria Engineering Journal, 83, pp. 326-334. doi: 10.1016/j.aej.2023.10.052
  16. Finkler, S. A., Knickman, J. R., Hendrickson, G., Lipkin, Jr., M., & Thompson, W. G. (1993). A comparison of work-sampling and time-and-motion techniques for studies in health services research. Health Services Research, 28(5), pp. 577-597. PMID: 8270422.
  17. Ganorkar, A. B., Lakhe, R. R., & Agrawal, K. N. (2019). Methodology for application of Maynard operation sequence technique (MOST) for time-driven activity-based costing (TDABC). International Journal of Productivity and Performance Management, 68(1), pp. 2-25. doi: 10.1108/IJPPM-06-2017-0156
  18. Gong, Y., et al. (2022). Wearable acceleration-based action recognition for long-term and continuous activity analysis in construction site. Journal of Building Engineering, 52, p. 104448. doi: 10.1016/j.jobe.2022.104448
  19. Gong, J., & Caldas, C. H. (2011). An object recognition, tracking, and contextual reasoning-based video interpretation method for rapid productivity analysis of construction operations. Automation in Construction, 20(8), pp. 1211-1226. doi: 10.1016/j.autcon.2011.05.005
  20. Groover, M. P. (2007). Work Systems and the Methods, Measurement, and Management of Work. Pearson Prentice Hall. Pearson; 1st edition. Available at https://books.google. pt/books?id=ktseAQAAIAAJ
  21. Jacobsen, E. L., et al. (2024). Probabilistic forecasting of construction labor productivity metrics. Journal of Information Technology in Construction, 29, pp. 58-83. doi: 10.36680/j. itcon.2024.004
  22. Jarkas, A. M., & Bitar, C. G. (2012). Factors affecting construction labor productivity in Kuwait. Journal of Construction Engineering and Management, 138(7), pp. 811-820. doi: 10.1061/(ASCE)CO.1943-7862.0000501
  23. Jesus, C., et al. (2024). Adopting industry 4.0 and lean practices in heavy metalworking: Impact of human factors on productivity. In: Rocha, A., et al. (eds.), Information Systems and Technologies. Springer Nature Switzerland (Lecture Notes in Networks and Systems), Cham, pp. 241-252. doi: 10.1007/978-3-031-45648-0_24
  24. Jiang, H., et al. (2015). A labor consumption measurement system based on real-time tracking technology for dam construction site. Automation in Construction, 52, pp. 1-15. doi: 10.1016/j. autcon.2015.02.004
  25. Khazen, M., Nik-Bakht, M., & Moselhi, O. (2024). Monitoring workers on indoor construction sites using data fusion of real-time worker’s location, body orientation, and productivity state. Automation in Construction, 160, p. 105327. doi: 10.1016/j.autcon.2024.105327
  26. Lee, T. Y., Ahmad, F., & Sarijari, M. A. (2024). Activity sampling in the construction industry: A review and research agenda. International Journal of Productivity and Performance Management, 73(5), pp. 1479-1501. doi: 10.1108/IJPPM-10-2022-0507
  27. Lindhard, S. M. (2023). Applying work measurements to identify productivity potentials: The case of prefabricated concrete elements. International Journal of Construction Management, 24(15), pp. 1668-1678. https://doi.org/10.1080/15623599.202 3.2286115
  28. Lopes Miranda, Jr, H., et al. (2017). The internet of things sensors technologies and their applications for complex engineering projects: A digital construction site framework. Brazilian Journal of Operations & Production Management, 14(4), pp. 567-576. doi: 10.14488/BJOPM.2017.v14.n4.a12
  29. Meyers, F. E., & Stewart, J. R. (2002). Motion and Time Study for Lean Manufacturing. Prentice Hall. Pearson College Div; Subsequent edition. Available at https://books.google.pt/books?id=c-MoeAQAAIAAJ
  30. Nassri, S., et al. (2023). Labor waste in housing construction projects: An empirical study. Smart and Sustainable Built Environment, 12(2), pp. 325-340. doi: 10.1108/SASBE-07-2021-0108
  31. Nath, N. D., Akhavian, R., & Behzadan, A. H. (2017). Ergonomic analysis of construction worker’s body postures using wearable mobile sensors. Applied Ergonomics, 62, pp. 107-117. doi: 10.1016/j.apergo.2017.02.007
  32. Navon, R. (2005). Automated project performance control of construction projects. Automation in Construction, 14(4), pp. 467-476. doi: 10.1016/j.autcon.2004.09.006
  33. Navon, R., & Goldschmidt, E. (2003a). Can labor inputs be measured and controlled automatically? Journal of Construction Engineering and Management, 129(4), pp. 437-445. doi: 10.1061/(ASCE)0733-9364(2003)129:4(437)
  34. Navon, R., & Goldschmidt, E. (2003b). Monitoring labor inputs: Automated-data-collection model and enabling technologies. Automation in Construction, 12(2), pp. 185-199. doi: 10.1016/S0926-5805(02)00043-2
  35. Niebel, B. W., & Freivalds, A. (2013). Niebel’s Methods, Standards, and Work Design. McGraw-Hill Education. Available at https://books.google.pt/books?id=Pb24LwEACAAJ
  36. Nunamaker, Jr, J. F., Chen, M., & Purdin, T. D. M. (1990). Systems development in information systems research. Journal of Management Information Systems, 7(3), pp. 89-106. http://www.jstor.org/stable/40397957. doi: 10.1080/07421222.1990.11517898
  37. Panina, D., & Aiello, J. R. (2005). Acceptance of electronic monitoring and its consequences in different cultural contexts: A conceptual model. Journal of International Management, 11(2), pp. 269-292. doi: 10.1016/j.intman.2005.03.009
  38. Peffers, K., et al. (2007). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), pp. 45-77. doi: 10.2753/MIS0742-1222240302
  39. Pereira, L., & Tortorella, G. (2018). Identification of the relationships between critical success factors, barriers and practices for lean implementation in a small company. Brazilian Journal of Operations & Production Management, 15(2), pp. 232-246. doi: 10.14488/BJOPM.2018.v15.n2.a6
  40. Pérez, C. T., Salling, S., & Wandahl, S. (2022). Using smartwatches to understand the relationship between construction workers’ travelled distance and time spent on direct work. IOP Conference Series: Earth and Environmental Science, 1101(8), p. 082009. doi: 10.1088/1755-1315/1101/8/082009
  41. Shamsollahi, D., Moselhi, O., & Khorasani, K. (2024). Data integration using deep learning and real-time locating system (RTLS) for automated construction progress monitoring and reporting. Automation in Construction, 168, p. 105778. doi: 10.1016/j.autcon.2024.105778
  42. Shehata, M. E., & El-Gohary, K. M. (2011). Towards improving construction labor productivity and projects’ performance. Alexandria Engineering Journal, 50(4), pp. 321-330. doi: 10.1016/j.aej.2012.02.001
  43. Sink, D. S. (1985). Productivity Management: Planning, Evaluation, Control, and Improvement. Wiley; 1st edition. Available at https://books.google.pt/books?id=VQtPAAAAMAAJ
  44. Siriwardhana, S., & Moehler, R. (2024). Mastering the skills of construction 4.0: A review of the literature using science mapping. Smart and Sustainable Built Environment, 13(4), pp. 989-1014. doi: 10.1108/SASBE-03-2023-0045
  45. Teizer, J., Cheng, T., & Fang, Y. (2013). Location tracking and data visualization technology to advance construction ironworkers’ education and training in safety and productivity. Automation in Construction, 35, pp. 53-68. doi: 10.1016/j. autcon.2013.03.004
  46. Wandahl, S., et al. (2023). Correlation of construction workers’ movement and direct work rates. Journal of Engineering, Project, and Production Management, 13(2), pp. 125-137. doi: 10.32738/JEPPM-2023-0013
  47. Wang, K., et al. (2024). From industry 4.0 to construction 4.0: Barriers to the digital transformation of engineering and construction sectors. Engineering, Construction and Architectural Management, 31(1), pp. 136-158. doi: 10.1108/ECAM-05-2022-0383
  48. Wang, Z., et al. (2025). Sensor adoption in the construction industry: Barriers, opportunities, and strategies. Automation in Construction, 170, p. 105937. doi: 10.1016/j. autcon.2024.105937
  49. Xu, L., et al. (2025). Automation in manufacturing and assembly of industrialised construction. Automation in Construction, 170, p. 105945. doi: 10.1016/j.autcon.2024.105945
  50. Yang, J., et al. (2015). Construction performance monitoring via still images, time-lapse photos, and video streams: Now, tomorrow, and the future. Advanced Engineering Informatics, 29(2), pp. 211-224. doi: 10.1016/j.aei.2015.01.011
  51. Yang, Z., et al. (2019). Assessment of construction workers’ labor intensity based on wearable smartphone system. Journal of Construction Engineering and Management, 145(7), p. 04019039. doi: 10.1061/(ASCE)CO.1943-7862.0001666
  52. Yap, J. B. H., et al. (2021). Revisiting critical delay factors for construction: Analysing projects in Malaysia. Alexandria Engineering Journal, 60(1), pp. 1717-1729. doi: 10.1016/j. aej.2020.11.021
  53. Zhang, M., et al. (2018). Research on construction workers’ activity recognition based on smartphone. Sensors, 18(8), p. 2667. doi: 10.3390/s18082667
  54. Zhao, J., et al. (2021). Using real-time indoor resource positioning to track the progress of tasks in construction sites. Frontiers in Built Environment, 7, p. 661166. doi: 10.3389/fbuil.2021.661166
DOI: https://doi.org/10.2478/otmcj-2025-0009 | Journal eISSN: 1847-6228 | Journal ISSN: 1847-5450
Language: English
Page range: 121 - 136
Submitted on: Aug 30, 2024
Accepted on: Apr 29, 2025
Published on: Jul 24, 2025
Published by: University of Zagreb
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Diego Calvetti, Miguel Luiz Ribeiro Ferreira, published by University of Zagreb
This work is licensed under the Creative Commons Attribution 4.0 License.