Adrian, J. J. (2004). <em>Construction Productivity: Measurement and Improvement</em>. Stipes. Available at https://books.google.pt/books?id=1kJ_QwAACAAJ.
Akhavian, R., & Behzadan, A. H. (2016). Smartphone-based construction workers’ activity recognition and classification. <em>Automation in Construction, 71</em>, pp. 198-209. doi: <a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> autcon.2016.08.015
Alder, G. S. (2001). Employee reactions to electronic performance monitoring: A consequence of organizational culture. <em>The Journal of High Technology Management Research, 12</em>(2), pp. 323-342. doi: <a href="https://doi.org/10.1016/S1047-8310(01)00042-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S1047-8310(01)00042-6</a>
Altheimer, J., & Schneider, J. (2024). Smart-watch-based construction worker activity recognition with hand-held power tools. <em>Automation in Construction, 167</em>, p. 105684. doi: <a href="https://doi.org/10.1016/j.autcon.2024.105684" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.autcon.2024.105684</a>
Aziz, R. F., & Hafez, S. M. (2013). Applying lean thinking in construction and performance improvement. <em>Alexandria Engineering Journal, 52</em>(4), pp. 679-695. doi: <a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> aej.2013.04.008
Calvetti, D., & Ferreira, M. L. R. (2018). Agile methodology to performance measure and identification of impact factors in the labour productivity of industrial workers. <em>U.Porto Journal of Engineering, 4</em>(2), pp. 49-64. doi: <a href="https://doi.org/10.24840/2183-6493_004.002_0005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.24840/2183-6493_004.002_0005</a>
Calvetti, D., Goncalves, M., Vahl, F., Meda, P., & Sousa, H. de. (2021a). Labour productivity as a means for assessing environmental impact in the construction industry. <em>Environmental Engineering and Management Journal, 20</em>(5), pp. 781-790. doi: <a href="https://doi.org/10.30638/eemj.2021.073" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.30638/eemj.2021.073</a>
Calvetti, D., Mêda, P., <em>et al</em>. (2021b) Mechanization of construction tasks: Level assessment and craft workforce awareness. In: <em>2021 European Conference on Computing in Construction</em>, pp. 342-349. doi: <a href="https://doi.org/10.35490/EC3.2021.172." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.35490/EC3.2021.172.</a>
Cheng, T., et al. (2013). Automated task-level activity analysis through fusion of real time location sensors and worker’s thoracic posture data. <em>Automation in Construction, 29</em>, pp. 24-39. doi: <a href="https://doi.org/10.1016/j.autcon.2012.08.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.autcon.2012.08.003</a>
Cheng, M.-Y., Khitam, A. F. K., & Tanto, H. H. (2023). Construction worker productivity evaluation using action recognition for foreign labor training and education: A case study of Taiwan. <em>Automation in Construction, 150</em>, p. 104809. doi: <a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> autcon.2023.104809
Cheng, T., & Teizer, J. (2013). Real-time resource location data collection and visualization technology for construction safety and activity monitoring applications. <em>Automation in Construction, 34</em>, pp. 3-15. doi: <a href="https://doi.org/10.1016/j.autcon.2012.10.017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.autcon.2012.10.017</a>
Chen, X., & Yu, Y. (2024). Automatic repetitive action counting for construction worker ergonomic assessment. <em>Automation in Construction, 167</em>, p. 105726. doi: <a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> autcon.2024.105726
Costella, M. F., et al. (2018). Proposal and evaluation of a method to implement the lean construction principles. <em>Brazilian Journal of Operations & Production Management, 15</em>(4), pp. 545-557. doi: <a href="https://doi.org/10.14488/BJOPM.2018.v15.n4.a8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.14488/BJOPM.2018.v15.n4.a8</a>
Daoud, A. O., El Hefnawy, M., & Wefki, H. (2023). Investigation of critical factors affecting cost overruns and delays in Egyptian mega construction projects. <em>Alexandria Engineering Journal, 83</em>, pp. 326-334. doi: <a href="https://doi.org/10.1016/j.aej.2023.10.052" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.aej.2023.10.052</a>
Finkler, S. A., Knickman, J. R., Hendrickson, G., Lipkin, Jr., M., & Thompson, W. G. (1993). A comparison of work-sampling and time-and-motion techniques for studies in health services research. <em>Health Services Research, 28</em>(5), pp. 577-597. PMID: 8270422.
Ganorkar, A. B., Lakhe, R. R., & Agrawal, K. N. (2019). Methodology for application of Maynard operation sequence technique (MOST) for time-driven activity-based costing (TDABC). <em>International Journal of Productivity and Performance Management, 68</em>(1), pp. 2-25. doi: <a href="https://doi.org/10.1108/IJPPM-06-2017-0156" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1108/IJPPM-06-2017-0156</a>
Gong, Y., et al. (2022). Wearable acceleration-based action recognition for long-term and continuous activity analysis in construction site. <em>Journal of Building Engineering, 52</em>, p. 104448. doi: <a href="https://doi.org/10.1016/j.jobe.2022.104448" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jobe.2022.104448</a>
Gong, J., & Caldas, C. H. (2011). An object recognition, tracking, and contextual reasoning-based video interpretation method for rapid productivity analysis of construction operations. <em>Automation in Construction, 20</em>(8), pp. 1211-1226. doi: <a href="https://doi.org/10.1016/j.autcon.2011.05.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.autcon.2011.05.005</a>
Groover, M. P. (2007). <em>Work Systems and the Methods, Measurement, and Management of Work</em>. Pearson Prentice Hall. Pearson; 1st edition. Available at https://books.google. pt/books?id=ktseAQAAIAAJ
Jacobsen, E. L., et al. (2024). Probabilistic forecasting of construction labor productivity metrics. <em>Journal of Information Technology in Construction, 29</em>, pp. 58-83. doi: <a href="https://doi.org/10.36680/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.36680/j.</a> itcon.2024.004
Jarkas, A. M., & Bitar, C. G. (2012). Factors affecting construction labor productivity in Kuwait. <em>Journal of Construction Engineering and Management, 138</em>(7), pp. 811-820. doi: <a href="https://doi.org/10.1061/(ASCE)CO.1943-7862.0000501" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1061/(ASCE)CO.1943-7862.0000501</a>
Jesus, C., et al. (2024). Adopting industry 4.0 and lean practices in heavy metalworking: Impact of human factors on productivity. In: Rocha, A., et al. (eds.), <em>Information Systems and Technologies</em>. Springer Nature Switzerland (Lecture Notes in Networks and Systems), Cham, pp. 241-252. doi: <a href="https://doi.org/10.1007/978-3-031-45648-0_24" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-031-45648-0_24</a>
Jiang, H., et al. (2015). A labor consumption measurement system based on real-time tracking technology for dam construction site. <em>Automation in Construction, 52</em>, pp. 1-15. doi: <a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> autcon.2015.02.004
Khazen, M., Nik-Bakht, M., & Moselhi, O. (2024). Monitoring workers on indoor construction sites using data fusion of real-time worker’s location, body orientation, and productivity state. <em>Automation in Construction, 160</em>, p. 105327. doi: <a href="https://doi.org/10.1016/j.autcon.2024.105327" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.autcon.2024.105327</a>
Lee, T. Y., Ahmad, F., & Sarijari, M. A. (2024). Activity sampling in the construction industry: A review and research agenda. <em>International Journal of Productivity and Performance Management, 73</em>(5), pp. 1479-1501. doi: <a href="https://doi.org/10.1108/IJPPM-10-2022-0507" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1108/IJPPM-10-2022-0507</a>
Lindhard, S. M. (2023). Applying work measurements to identify productivity potentials: The case of prefabricated concrete elements. <em>International Journal of Construction Management, 24</em>(15), pp. 1668-1678. <a href="https://doi.org/10.1080/15623599.202" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15623599.202</a> 3.2286115
Lopes Miranda, Jr, H., et al. (2017). The internet of things sensors technologies and their applications for complex engineering projects: A digital construction site framework. <em>Brazilian Journal of Operations & Production Management, 14</em>(4), pp. 567-576. doi: <a href="https://doi.org/10.14488/BJOPM.2017.v14.n4.a12" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.14488/BJOPM.2017.v14.n4.a12</a>
Meyers, F. E., & Stewart, J. R. (2002). <em>Motion and Time Study for Lean Manufacturing</em>. Prentice Hall. Pearson College Div; Subsequent edition. Available at https://books.google.pt/books?id=c-MoeAQAAIAAJ
Nassri, S., et al. (2023). Labor waste in housing construction projects: An empirical study. <em>Smart and Sustainable Built Environment, 12</em>(2), pp. 325-340. doi: <a href="https://doi.org/10.1108/SASBE-07-2021-0108" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1108/SASBE-07-2021-0108</a>
Nath, N. D., Akhavian, R., & Behzadan, A. H. (2017). Ergonomic analysis of construction worker’s body postures using wearable mobile sensors. <em>Applied Ergonomics, 62</em>, pp. 107-117. doi: <a href="https://doi.org/10.1016/j.apergo.2017.02.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.apergo.2017.02.007</a>
Navon, R. (2005). Automated project performance control of construction projects. <em>Automation in Construction, 14</em>(4), pp. 467-476. doi: <a href="https://doi.org/10.1016/j.autcon.2004.09.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.autcon.2004.09.006</a>
Navon, R., & Goldschmidt, E. (2003a). Can labor inputs be measured and controlled automatically? <em>Journal of Construction Engineering and Management, 129</em>(4), pp. 437-445. doi: <a href="https://doi.org/10.1061/(ASCE)0733-9364(2003)129:4(437)" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1061/(ASCE)0733-9364(2003)129:4(437)</a>
Navon, R., & Goldschmidt, E. (2003b). Monitoring labor inputs: Automated-data-collection model and enabling technologies. <em>Automation in Construction, 12</em>(2), pp. 185-199. doi: <a href="https://doi.org/10.1016/S0926-5805(02)00043-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0926-5805(02)00043-2</a>
Niebel, B. W., & Freivalds, A. (2013). <em>Niebel’s Methods, Standards, and Work Design</em>. McGraw-Hill Education. Available at https://books.google.pt/books?id=Pb24LwEACAAJ
Nunamaker, Jr, J. F., Chen, M., & Purdin, T. D. M. (1990). Systems development in information systems research. <em>Journal of Management Information Systems, 7</em>(3), pp. 89-106. http://www.jstor.org/stable/40397957. doi: <a href="https://doi.org/10.1080/07421222.1990.11517898" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/07421222.1990.11517898</a>
Panina, D., & Aiello, J. R. (2005). Acceptance of electronic monitoring and its consequences in different cultural contexts: A conceptual model. <em>Journal of International Management, 11</em>(2), pp. 269-292. doi: <a href="https://doi.org/10.1016/j.intman.2005.03.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.intman.2005.03.009</a>
Peffers, K., et al. (2007). A design science research methodology for information systems research. <em>Journal of Management Information Systems, 24</em>(3), pp. 45-77. doi: <a href="https://doi.org/10.2753/MIS0742-1222240302" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2753/MIS0742-1222240302</a>
Pereira, L., & Tortorella, G. (2018). Identification of the relationships between critical success factors, barriers and practices for lean implementation in a small company. <em>Brazilian Journal of</em> <em>Operations & Production Management, 15</em>(2), pp. 232-246. doi: <a href="https://doi.org/10.14488/BJOPM.2018.v15.n2.a6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.14488/BJOPM.2018.v15.n2.a6</a>
Pérez, C. T., Salling, S., & Wandahl, S. (2022). Using smartwatches to understand the relationship between construction workers’ travelled distance and time spent on direct work. <em>IOP Conference Series: Earth and Environmental Science, 1101</em>(8), p. 082009. doi: <a href="https://doi.org/10.1088/1755-1315/1101/8/082009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/1755-1315/1101/8/082009</a>
Shamsollahi, D., Moselhi, O., & Khorasani, K. (2024). Data integration using deep learning and real-time locating system (RTLS) for automated construction progress monitoring and reporting. <em>Automation in Construction, 168</em>, p. 105778. doi: <a href="https://doi.org/10.1016/j.autcon.2024.105778" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.autcon.2024.105778</a>
Shehata, M. E., & El-Gohary, K. M. (2011). Towards improving construction labor productivity and projects’ performance. <em>Alexandria Engineering Journal, 50</em>(4), pp. 321-330. doi: <a href="https://doi.org/10.1016/j.aej.2012.02.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.aej.2012.02.001</a>
Sink, D. S. (1985). <em>Productivity Management: Planning, Evaluation, Control, and Improvement</em>. Wiley; 1st edition. Available at https://books.google.pt/books?id=VQtPAAAAMAAJ
Siriwardhana, S., & Moehler, R. (2024). Mastering the skills of construction 4.0: A review of the literature using science mapping. <em>Smart and Sustainable Built Environment, 13</em>(4), pp. 989-1014. doi: <a href="https://doi.org/10.1108/SASBE-03-2023-0045" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1108/SASBE-03-2023-0045</a>
Teizer, J., Cheng, T., & Fang, Y. (2013). Location tracking and data visualization technology to advance construction ironworkers’ education and training in safety and productivity. <em>Automation in Construction, 35</em>, pp. 53-68. doi: <a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> autcon.2013.03.004
Wandahl, S., et al. (2023). Correlation of construction workers’ movement and direct work rates. <em>Journal of Engineering, Project, and Production Management, 13</em>(2), pp. 125-137. doi: <a href="https://doi.org/10.32738/JEPPM-2023-0013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.32738/JEPPM-2023-0013</a>
Wang, K., et al. (2024). From industry 4.0 to construction 4.0: Barriers to the digital transformation of engineering and construction sectors. <em>Engineering, Construction and Architectural Management, 31</em>(1), pp. 136-158. doi: <a href="https://doi.org/10.1108/ECAM-05-2022-0383" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1108/ECAM-05-2022-0383</a>
Wang, Z., et al. (2025). Sensor adoption in the construction industry: Barriers, opportunities, and strategies. <em>Automation in Construction, 170</em>, p. 105937. doi: <a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> autcon.2024.105937
Xu, L., et al. (2025). Automation in manufacturing and assembly of industrialised construction. <em>Automation in Construction, 170</em>, p. 105945. doi: <a href="https://doi.org/10.1016/j.autcon.2024.105945" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.autcon.2024.105945</a>
Yang, J., et al. (2015). Construction performance monitoring via still images, time-lapse photos, and video streams: Now, tomorrow, and the future. <em>Advanced Engineering Informatics, 29</em>(2), pp. 211-224. doi: <a href="https://doi.org/10.1016/j.aei.2015.01.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.aei.2015.01.011</a>
Yang, Z., et al. (2019). Assessment of construction workers’ labor intensity based on wearable smartphone system. <em>Journal of Construction Engineering and Management, 145</em>(7), p. 04019039. doi: <a href="https://doi.org/10.1061/(ASCE)CO.1943-7862.0001666" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1061/(ASCE)CO.1943-7862.0001666</a>
Yap, J. B. H., et al. (2021). Revisiting critical delay factors for construction: Analysing projects in Malaysia. <em>Alexandria Engineering Journal, 60</em>(1), pp. 1717-1729. doi: <a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> aej.2020.11.021
Zhang, M., et al. (2018). Research on construction workers’ activity recognition based on smartphone. <em>Sensors, 18</em>(8), p. 2667. doi: <a href="https://doi.org/10.3390/s18082667" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/s18082667</a>
Zhao, J., et al. (2021). Using real-time indoor resource positioning to track the progress of tasks in construction sites. <em>Frontiers in Built Environment, 7</em>, p. 661166. doi: <a href="https://doi.org/10.3389/fbuil.2021.661166" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fbuil.2021.661166</a>