References
- Ahlemann, F., Schütte, R., & Stieglitz, S. (2021). Innovation Through Information Systems: Volume II: A Collection of Latest Research on Technology. Springer, Germany.
- AIA California Council. (2007). Integrated Project Delivery: A Guide, The American Institute of Architects, California Council (AIA CC), Sacramento, CA, USA.
- Akinosho, T. D., Oyedele, L. O., Bilal, M., Ajayi, A. O., Delgado, M. D., & Akinade, O. O., et al. (2020). Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering, 32, p. 101827. doi: 10.1016/j.jobe.2020.101827
- Al Khalil, M. I. (2002). Selecting the appropriate project delivery method using AHP. International Journal of Project Management, 20(6), pp. 469-474. doi: 10.1016/S0263-7863(01)00032-1
- Al-Shamsi, M. A. S. (2013). A Guide to the Project Management Body of Knowledge. Project Management Institute, Pennsylvania.
- Collins, L. M. (2007). Research design and methods. In: Birren, J. E. (Ed.), Encyclopedia of Gerontology. Elsevier, New York, pp. 433–442.
- El-Sawalhi, N. I., & Shehatto, O. (2014). A neural network model for building construction projects cost estimating. Journal of Construction Engineering and Project Management., 4(4), pp. 9-16. doi: 10.6106/JCEPM.2014.4.4.009
- Fischer, M., Ashcraft, H. W., Reed, D., & Khanzode, A. (2017). Integrating Project Delivery. John Wiley & Sons, New York.
- Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron) – A review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), pp. 2627-2636. doi: 10.1016/S1352-2310(97)00447-0
- Ghassemi, R., & Becerik-Gerber, B. (2011). Transitioning to integrated project delivery: Potential barriers and lessons learned. Lean Construction Journal, pp. 32-52. doi: 10.60164/uwvk0fog7
- Glick, S., & Guggemos, A. (2009). IPD and BIM: Benefits and opportunities for regulatory agencies. In: Proceedings of 45th Associated Schools of Construction National Conference, Gainesville, Florida.
- Golnaraghi, S., Zangenehmadar, Z., Moselhi, O., & Alkass, S. (2019). Application of artificial neural network(s) in predicting formwork labour productivity. Advances in Civil Engineering, 2019, pp. 1-11. doi: 10.1155/2019/5972620
- Guo, F., Chang-Richards, Y., Wilkinson, S., & Li, T. C. (2014). Effects of project governance structures on the management of risks in major infrastructure projects: A comparative analysis. International Journal of Project Management, 32(5), pp. 815-826. doi: 10.1016/j.ijproman.2013.10.001
- Hale, D. R., Shrestha, P. P., Gibson, Jr., G. E., & Migliaccio, G. C., et al. (2009). Empirical comparison of design/build and design/bid/build project delivery methods. Journal of Construction Engineering and Management, 135(7), pp. 579-587. doi: 10.1061/(ASCE)CO.1943-7862.0000017
- Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Prentice Hall, New Jersey.
- Huahui, L., Deng, X., & Chang, T.-Y. (2019). BIM-based platform for collaborative building design and project management. Journal of Computing in Civil Engineering, 33(3), pp. 1-15. doi: 10.1061/(ASCE)CP.1943-5487.0000830
- Jain, M., & Pathak, K. K. (2014). Applications of artificial neural network in construction engineering and management-a review. International Journal of Engineering Technology, Management and Applied Sciences, 2(3), pp. 134-142.
- Juszczyk, M., & Leśniak, A. (2019). Modelling construction site cost index based on neural network ensembles. Symmetry, 11(3), p. 411. doi: 10.3390/sym11030411
- Kent, D. C., & Becerik-Gerber, B. (2010). Understanding construction industry experience and attitudes toward integrated project delivery. Journal of Construction Engineering and Management, 136(8), pp. 815-825. doi: 10.1061/(ASCE)CO.1943-7862.0000188
- Kerzner, H. (2022). Project Management: A Systems Approach to Planning, Scheduling, and Controlling. Wiley, New York, NY.
- Konchar, M., & Sanvido, V. (1998). Comparison of US project delivery systems. Journal of Construction Engineering and Management, 124(6), pp. 435-444. doi: 10.1061/(ASCE)0733-9364(1998)124:6(435)
- Kulkarni, P. S., Londhe, S. N., & Deo, M. (2017). Artificial neural networks for construction management: A review. Journal of Soft Computing in Civil Engineering, 1(2), pp. 70-88. doi: 10.22115/SCCE.2017.49580
- Kwofie, T. E., Afram, S., & Botchway, E. (2016). A critical success model for PPP public housing delivery in Ghana. Built Environment Project and Asset Management, 6(1), pp. 58-73. doi: 10.1108/BEPAM-04-2014-0026
- Linstone, H. A., & Turoff, M. (1975). The Delphi Method: Techniques and Applications. Addison-Wesley Publishing Company, Advanced Book Program, Michigan.
- Mahdi, I. M., & Alreshaid, K. (2005). Decision support system for selecting the proper project delivery method using analytical hierarchy process (AHP). International Journal of Project Management, 23(7), pp. 564-572. doi: 10.1016/j. ijproman.2005.05.007
- Matel, E., Vahdatikhaki, F., Hosseinyalamdary, S., Evers, T., & Voordijk, H. (2022). An artificial neural network approach for cost estimation of engineering services. International Journal of Construction Management, 22(7), pp. 1274-1287. doi: 10.1080/15623599.2019.1692400
- Miller, J. B., Garvin, M. J., Ibbs, C. W., & Mahoney, S. E. (2000). Toward a new paradigm: Simultaneous use of multiple project delivery methods. Journal of Management in Engineering, 16(3), pp. 58-67. doi: 10.1061/(ASCE)0742-597X(2000) 16:3(58)
- Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York, NY.
- Molenaar, K., Sobin, N., Gransberg, D., McCuen, T.L., Korkmaz, S., & Horman, M. (2009). Sustainable, high performance projects and project delivery methods: A state-of-practice report. White Paper for the Design-Build Institute of America and the Charles Pankow Foundation. Charles Pankow Foundation Claremont, CA, USA, pp. 1-26.
- Nunnally, J. C. (1994). Psychometric Theory. McGraw-Hill Series in Psychology, New York, NY.
- Omar, M. N., & Fayek, A. R. (2016). Modeling and evaluating construction project competencies and their relationship to project performance. Automation in Construction, 69, pp. 115-130. doi: 10.1016/j.autcon.2016.05.021
- Pakkala, P. (2002). Innovative Project Delivery Methods for Infrastructure. Citeseer, Helsinki.
- Qiang, M., Wen, Q., Jiang, H., & Yuan, S. (2015). Factors governing construction project delivery selection: A content analysis. International Journal of Project Management, 33(8), pp. 1780-1794. doi: 10.1016/j. ijproman.2015.07.001
- Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge.
- Sacks, R., Eastman, C., Lee, G., & Teicholz, P. (2018). BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers. Wiley, New York, NY.
- Shrestha, P. P., Maharajan, R., Batista, J. R., & Shakya, B. (2016). Comparison of utility managers’ and project managers’ satisfaction rating of alternative project delivery methods used in water and wastewater infrastructures. Public Works Management & Policy, 21(3), pp. 263-279. doi: 10.1177/1087724X15626716
- Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, pp. 53-55. doi: 10.5116/ijme.4dfb.8dfd
- Tijanić, K., Car-Pušić, D., & Šperac, M. (2020). Cost estimation in road construction using artificial neural network. Neural Computing and Applications, 32(13), pp. 9343-9355. doi: 10.1007/s00521-019-04443-y
- Zeng, Z., Minchin, R.E., Ptschelinzew, L., & Zhang, Y. (2014). Multi-objective decision-making to select multiple project delivery methods for multi-project transportation systems. In Proceedings: 2nd International Structural Engineering and Construction Australasia and Southeast Asia Conference, Research Publishing, Singapore, 2014, pp. 477–482.