Have a personal or library account? Click to login
An artificial neural network model to relate organisation characteristics and delivery methods of construction projects Cover

An artificial neural network model to relate organisation characteristics and delivery methods of construction projects

Open Access
|Jun 2025

References

  1. Ahlemann, F., Schütte, R., & Stieglitz, S. (2021). Innovation Through Information Systems: Volume II: A Collection of Latest Research on Technology. Springer, Germany.
  2. AIA California Council. (2007). Integrated Project Delivery: A Guide, The American Institute of Architects, California Council (AIA CC), Sacramento, CA, USA.
  3. Akinosho, T. D., Oyedele, L. O., Bilal, M., Ajayi, A. O., Delgado, M. D., & Akinade, O. O., et al. (2020). Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering, 32, p. 101827. doi: 10.1016/j.jobe.2020.101827
  4. Al Khalil, M. I. (2002). Selecting the appropriate project delivery method using AHP. International Journal of Project Management, 20(6), pp. 469-474. doi: 10.1016/S0263-7863(01)00032-1
  5. Al-Shamsi, M. A. S. (2013). A Guide to the Project Management Body of Knowledge. Project Management Institute, Pennsylvania.
  6. Collins, L. M. (2007). Research design and methods. In: Birren, J. E. (Ed.), Encyclopedia of Gerontology. Elsevier, New York, pp. 433–442.
  7. El-Sawalhi, N. I., & Shehatto, O. (2014). A neural network model for building construction projects cost estimating. Journal of Construction Engineering and Project Management., 4(4), pp. 9-16. doi: 10.6106/JCEPM.2014.4.4.009
  8. Fischer, M., Ashcraft, H. W., Reed, D., & Khanzode, A. (2017). Integrating Project Delivery. John Wiley & Sons, New York.
  9. Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron) – A review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), pp. 2627-2636. doi: 10.1016/S1352-2310(97)00447-0
  10. Ghassemi, R., & Becerik-Gerber, B. (2011). Transitioning to integrated project delivery: Potential barriers and lessons learned. Lean Construction Journal, pp. 32-52. doi: 10.60164/uwvk0fog7
  11. Glick, S., & Guggemos, A. (2009). IPD and BIM: Benefits and opportunities for regulatory agencies. In: Proceedings of 45th Associated Schools of Construction National Conference, Gainesville, Florida.
  12. Golnaraghi, S., Zangenehmadar, Z., Moselhi, O., & Alkass, S. (2019). Application of artificial neural network(s) in predicting formwork labour productivity. Advances in Civil Engineering, 2019, pp. 1-11. doi: 10.1155/2019/5972620
  13. Guo, F., Chang-Richards, Y., Wilkinson, S., & Li, T. C. (2014). Effects of project governance structures on the management of risks in major infrastructure projects: A comparative analysis. International Journal of Project Management, 32(5), pp. 815-826. doi: 10.1016/j.ijproman.2013.10.001
  14. Hale, D. R., Shrestha, P. P., Gibson, Jr., G. E., & Migliaccio, G. C., et al. (2009). Empirical comparison of design/build and design/bid/build project delivery methods. Journal of Construction Engineering and Management, 135(7), pp. 579-587. doi: 10.1061/(ASCE)CO.1943-7862.0000017
  15. Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Prentice Hall, New Jersey.
  16. Huahui, L., Deng, X., & Chang, T.-Y. (2019). BIM-based platform for collaborative building design and project management. Journal of Computing in Civil Engineering, 33(3), pp. 1-15. doi: 10.1061/(ASCE)CP.1943-5487.0000830
  17. Jain, M., & Pathak, K. K. (2014). Applications of artificial neural network in construction engineering and management-a review. International Journal of Engineering Technology, Management and Applied Sciences, 2(3), pp. 134-142.
  18. Juszczyk, M., & Leśniak, A. (2019). Modelling construction site cost index based on neural network ensembles. Symmetry, 11(3), p. 411. doi: 10.3390/sym11030411
  19. Kent, D. C., & Becerik-Gerber, B. (2010). Understanding construction industry experience and attitudes toward integrated project delivery. Journal of Construction Engineering and Management, 136(8), pp. 815-825. doi: 10.1061/(ASCE)CO.1943-7862.0000188
  20. Kerzner, H. (2022). Project Management: A Systems Approach to Planning, Scheduling, and Controlling. Wiley, New York, NY.
  21. Konchar, M., & Sanvido, V. (1998). Comparison of US project delivery systems. Journal of Construction Engineering and Management, 124(6), pp. 435-444. doi: 10.1061/(ASCE)0733-9364(1998)124:6(435)
  22. Kulkarni, P. S., Londhe, S. N., & Deo, M. (2017). Artificial neural networks for construction management: A review. Journal of Soft Computing in Civil Engineering, 1(2), pp. 70-88. doi: 10.22115/SCCE.2017.49580
  23. Kwofie, T. E., Afram, S., & Botchway, E. (2016). A critical success model for PPP public housing delivery in Ghana. Built Environment Project and Asset Management, 6(1), pp. 58-73. doi: 10.1108/BEPAM-04-2014-0026
  24. Linstone, H. A., & Turoff, M. (1975). The Delphi Method: Techniques and Applications. Addison-Wesley Publishing Company, Advanced Book Program, Michigan.
  25. Mahdi, I. M., & Alreshaid, K. (2005). Decision support system for selecting the proper project delivery method using analytical hierarchy process (AHP). International Journal of Project Management, 23(7), pp. 564-572. doi: 10.1016/j. ijproman.2005.05.007
  26. Matel, E., Vahdatikhaki, F., Hosseinyalamdary, S., Evers, T., & Voordijk, H. (2022). An artificial neural network approach for cost estimation of engineering services. International Journal of Construction Management, 22(7), pp. 1274-1287. doi: 10.1080/15623599.2019.1692400
  27. Miller, J. B., Garvin, M. J., Ibbs, C. W., & Mahoney, S. E. (2000). Toward a new paradigm: Simultaneous use of multiple project delivery methods. Journal of Management in Engineering, 16(3), pp. 58-67. doi: 10.1061/(ASCE)0742-597X(2000) 16:3(58)
  28. Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York, NY.
  29. Molenaar, K., Sobin, N., Gransberg, D., McCuen, T.L., Korkmaz, S., & Horman, M. (2009). Sustainable, high performance projects and project delivery methods: A state-of-practice report. White Paper for the Design-Build Institute of America and the Charles Pankow Foundation. Charles Pankow Foundation Claremont, CA, USA, pp. 1-26.
  30. Nunnally, J. C. (1994). Psychometric Theory. McGraw-Hill Series in Psychology, New York, NY.
  31. Omar, M. N., & Fayek, A. R. (2016). Modeling and evaluating construction project competencies and their relationship to project performance. Automation in Construction, 69, pp. 115-130. doi: 10.1016/j.autcon.2016.05.021
  32. Pakkala, P. (2002). Innovative Project Delivery Methods for Infrastructure. Citeseer, Helsinki.
  33. Qiang, M., Wen, Q., Jiang, H., & Yuan, S. (2015). Factors governing construction project delivery selection: A content analysis. International Journal of Project Management, 33(8), pp. 1780-1794. doi: 10.1016/j. ijproman.2015.07.001
  34. Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge.
  35. Sacks, R., Eastman, C., Lee, G., & Teicholz, P. (2018). BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers. Wiley, New York, NY.
  36. Shrestha, P. P., Maharajan, R., Batista, J. R., & Shakya, B. (2016). Comparison of utility managers’ and project managers’ satisfaction rating of alternative project delivery methods used in water and wastewater infrastructures. Public Works Management & Policy, 21(3), pp. 263-279. doi: 10.1177/1087724X15626716
  37. Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, pp. 53-55. doi: 10.5116/ijme.4dfb.8dfd
  38. Tijanić, K., Car-Pušić, D., & Šperac, M. (2020). Cost estimation in road construction using artificial neural network. Neural Computing and Applications, 32(13), pp. 9343-9355. doi: 10.1007/s00521-019-04443-y
  39. Zeng, Z., Minchin, R.E., Ptschelinzew, L., & Zhang, Y. (2014). Multi-objective decision-making to select multiple project delivery methods for multi-project transportation systems. In Proceedings: 2nd International Structural Engineering and Construction Australasia and Southeast Asia Conference, Research Publishing, Singapore, 2014, pp. 477–482.
DOI: https://doi.org/10.2478/otmcj-2025-0004 | Journal eISSN: 1847-6228 | Journal ISSN: 1847-5450
Language: English
Page range: 67 - 82
Submitted on: Nov 8, 2023
|
Accepted on: Nov 20, 2024
|
Published on: Jun 12, 2025
Published by: University of Zagreb
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Moein Pashaian, Babak Fazli Malidareh, Seyedeh Mona Tabandeh, published by University of Zagreb
This work is licensed under the Creative Commons Attribution 4.0 License.