Caldarelli, G., & Vespignani, A, ed. (2007). Complex Systems and Interdisciplinary Science. Large Scale Structure and Dynamics of Complex Networks. World Scientific Publishing Co. Pte. Ltd., Vol. 2, pp. 5–16. doi: 10.1142/6455
Eber, W. (2019a). Managing construction projects: Developing complexity into complicatedness. In: Sustainable Built Environment D-A-CH Conference 2019, Graz University of Technology, Graz, Austria.
Eber, W. (2019b) Bauprozessmanagement und Immobilienentwicklung - Von den Grundlagen zur Anwendung (Vortrag). Kolloquium Investor – Hochschule Bauindustrie 2019, LBI-Lehrstuhl Bauprozessmanagement, München.
Eber, W. (2020). Potentials of artificial intelligence in construction management. Organization, Technology and Management in Construction, 12(1), pp. 2053–2063. doi: 10.2478/otmcj-2020-0002
Eber, W. (2021a). System-theoretical approach to fundamental limits of controllability in complex organization. In: Networks Creative Construction eConference, 2021, CCC 2021, 28-31 June 2021, Budapest, Hungary.
Eber, W. (2021b). Manageability of complex organisational systems – System-theoretical confines of control. Organization, Technology and Management in Construction, 14(1), pp. 2640–2655. doi: 10.2478/otmcj-2022-0009
Eber, W. (2022). The role of friction in complex organisation networks. In: Creative Construction eConference 2022, CCC 2022, 09–11 July 2022, Budapest, Hungary.
Eber, W., & Zimmermann, J. (2018). Evaluating and retrieving parameters for optimizing organizational structures in real estate and construction management. Periodica Polytechnica Architecture, 49(2), pp. 155–164. doi: 10.3311/PPar.12709
Gordon, T. J., & Hayward, H. (1968). Initial experiments with the cross impact matrix method of forecasting. Futures, 1(2), pp. 100–116. doi: 10.1016/S0016-3287(68)80003-5
Hoffmann, W., & Körkemeyer, K. (2018). Zum Umgang mit der Komplexität von Bauvorhaben –Ergebnisse einer Expertenbefragung. Bauingenieur 93 Springer, VDI-Verlag, Düsseldorf.
Koskela, L. (2000). An Exploration Towards a Production Theory and Its Application to Construction. VTT-Publications, Kivimiehentie, Finland. ISBN 951-38-5565-1.
Koskela, L., Ballard, G., Howell, G., & Tommelein, I. (2002). The Foundations of Lean Construction. Design and Construction: Building in Value. doi: 10.4324/9780080491080-23
Picot, A., Dietl, H., & Franck, E. (2008). Organisation – Eine ökonomische Perspektive, 5. rev., edn. Schäffer-Poeschel, Stuttgart. ISBN 978-379-102371-7.
Shannon, C. E. (1948), A mathematical theory of communication. Bell System Technical Journal. Short Hills N.J. 27.1948, (July, October), S. 379-423, 623–656. ISSN 0005-8580
Smith, A. (1776). An Inquiry into the Nature and Causes of the Wealth of Nations, Vol 1, Nachdruck von 1981, Indianapolis, Indiana, USA, S. 14f. ISBN 0-86597-006-8.
White, D. R., Owen-Smith, J., Moody, J., & Powell, W. W. (2004). Networks, fields and organizations: Micro-Dynamics, scale and cohesive embeddings. Computational and Mathematical Organization Theory, 10, pp. 95–117. doi: 10.1023/B:CMOT.000 0032581.34436.7b
Winch, G. (2006). Towards a theory of construction as production by projects. Building Research & Information, 34(2), pp. 164–174. doi: 10.1080/09613210500491472
Zimmermann, J., & Eber, W. (2014). Mathematical background of key performance indicators for organizational structures in construction and real estate management. Procedia Engineering, 85, pp. 571–580. doi: 10.1016/j. proeng.2014.10.585
Zimmermann, J., & Eber, W. (2017). Criteria on the value of expert’s opinions for analyzing complex structures in construction and real estate management. Procedia Engineering, 196, pp. 335–342. doi: 10.1016/j.proeng.2017.07.208