Have a personal or library account? Click to login
Determination of construction process duration based on labor productivity estimation: A case study Cover

Determination of construction process duration based on labor productivity estimation: A case study

Open Access
|Nov 2021

References

  1. Abdullah, A. S., Ali, N. S., & Abdullah, P. A. (2019). Laborer's efficiency of gypsum plastering in Sulaimani city's projects. Kurdistan Journal of Applied Research (KJAR), 4(2), pp. 24–39.
  2. Aqlan, S. A. (2014). Impact of engineering software on construction project management in Bahrain. Applied Mechanics and Materials, 501, pp. 2614–2618.
  3. Asiedu, R. O., Frempong, N. K., & Alfen, H. W. (2017). Predicting likelihood of cost overrun in educational projects. Engineering, Construction and Architectural Management, 24, pp. 21–39. doi: 10.1108/ECAM-06-2015-0103.
  4. Barber, R. B. (2005). Understanding internally generated risks in projects. International Journal of Project Management, 23(8), pp. 584–590. doi: 10.1016/j.ijproman.
  5. Barraza, G. A., Back, W. E., & Mata, F. (2004). Probabilistic forecasting of project performance using stochastic S curves. Journal of Construction Engineering and Management, 130(1), pp. 25–32. doi: 10.1061/(ASCE)0733-9364.
  6. Briec, W., Kerstens, K., & Peypoch, N. (2012). Exact relations between four definitions of productivity indices and indicators. Bulletin of Economic Research, 64(2), pp. 265–274. doi: 10.1111/j.1467-8586.2010.00 378.
  7. Briš, R., & Litschmannová, M. (2004). STATISTIKA I. pro kombinované a distanční studium, Elektronické skriptum VŠB TU Ostrava. https://homel.vsb.cz/~bri10/Teaching/Statistika1
  8. Choi, J., & Ryu, H. G. (2015). Statistical analysis of construction productivity for highway pavement operations. KSCE Journal of Civil Engineering, 19(5), pp. 1193–1202. doi: 10.1007/s12205-014-0425-2.
  9. De Marco, A., Briccarello, D., & Rafele, C., (2009). Cost and schedule monitoring of industrial building projects: Case Study. Journal of Construction Engineering and Management, 135(9), pp. 853–862. doi: 10.1061/CO.1943-7862.0000055.
  10. Druker, E., Demangos, D., & Coleman, R. (2009). Performing statistical analysis on earned value data. International Cost Estimating & Analysis Association, https://www.iceaaonline.com/2009-ev004/
  11. El-Kholy, A. M. (2015). Predicting cost overrun in construction projects. International Journal of Construction Engineering and Management, 4(4), pp. 95–105. doi: 10.5923/j.ijcem.20150404.01.
  12. El-Maaty, A. E., & El-Kholy, A. M., Akal, A. Y. (2017). Modeling schedule overrun and cost escalation percentages of highway projects using fuzzy approach. Engineering, Construction and Architectural Management, 24(5), pp. 809–827. doi: 10.1108/ECAM-03.
  13. George, K. M., Park, N., & Yang, Z. (2015). A reliability measure for time series forecasting predictor. IFAC-Papers OnLine, 48(1), pp. 850–855.
  14. Gouett, M. C., Haas, C. T., Goodrum, P. M., & Caldas, C. H. (2011). Activity analysis for direct-work rate improvement in construction. Journal of Construction Engineering and Management, 137(12), pp. 1117–1124. doi: 10.1061/(ASCE)CO.1943-7862.0000375.
  15. Gerek, I. H., Erdis, E., Mistikoglu, G., & Usmen, M. A. (2016). Evaluation of plastering crew performance in building project using data envelopement analysis. Technological and Economic Development of Economy, 22(6), pp. 926–940. doi: 10.3846/20294913.2014.909903.
  16. Gulezian, R., & Samelian, F. (2003). Baseline determination in construction labor productivity-loss claim. Journal of Construction Engineering and Management, 19(4), pp. 160–165. doi: 10.1061/0742-597X(2003)19:4(160).
  17. Han, S., & Lee, T., Ko, Y. (2014). Implementation of construction performance database prototype for curtain wall operation in high-rise building construction. Journal of Asian Architecture and Building Engineering, 13(1), pp. 149–156. doi: 10.3130/jaabe.13.149.
  18. Hillson, D. (2004). Earned value management and risk management: A Practical Synergy. Proceedings of the PMI Global Congress, Anaheim, PMI, pp. 2250–0758.
  19. Idiake, J. E., & Ikemefuna, M. (2014). Improving labour performance in the management of wall plastering activity for one storey buildings in Abuja, Nigeria. Journal of Economics and Sustainable Development, 5(10).
  20. Jarský, Č. (2000). Automatizovaná příprava a řízení realiza ce staveb. CONTEC Kralupy n. Vlt.
  21. Jarský, Č. (2019). Příprava a realizace staveb, CONTEC. http://www.contec.cz [30-11-2017], Akademické nakladatelství CERM, ISBN 978-80-7204-994-3, Brno 2019.
  22. Ko, Y., & Han, S. (2015). Development of construction performance monitoring methodology using bayesian probabilistic approach. Journal of Asian Architecture and Building Engineering, 14(1), pp. 73–80. doi: 10.3130/jaabe.14.73.
  23. Khanzadi, M., & Shahbazi, M. M. (2018). Forecasting schedule relia bility using the reliability of agents’ promises. Asian Journal of Civil Engineering, 19(8), pp. 949–962. doi: 10.1007/s42107-018-0075-7.
  24. Khanzadi, M., Kaveh, A., Alipoura, M., & Khanmohammadi, R. (2017). Assessment of labor productivity in construction projects using system dynamic approach. Scientia Iranica, 24(6), pp. 2684–2695. doi: 10.24200/sci.2017.4164.
  25. Kim, B. C., & Reinschmidt, K. (2010). Probabilistic forecasting of project duration using kalman filter and the earned value method. Journal of Construction Engineering and Management, 136(8), pp. 834–843. doi: 10.1061/(ASCE)CO.1943-7862.0000192.
  26. Kubečková, D., & Smugala, S. (2020). Statistical methods applied to construction process management. Asian Journal of Civil Engineering, 21(3), pp. 479–494. doi: 10.1007s42107-020-00221-7.
  27. Kumar, A. V. S. S., & Faheem, B. (2008). Fuzzy optimization of construction project network with multiple objectives. Proceedings of the 4th International Structural Engineering and 16 Construction Conference, ISEC - 4 - Innovations in Structural Engineering and Construction, 2, pp. 1433–1437.
  28. Lee, D. E. (2005). Probability of project completion using stochastic project scheduling simulation (SPSS). Journal of Construction Engineering and Management, 131(3), pp. 310–318.
  29. Leu, S. S., & Lin, Y. C. (2008). Project performance evaluation based on statistical process control techniques. Journal of Construction Engineering and Management, 134(10), pp. 813–819. doi: 10.1061/0733-9364.
  30. Lipke, W. (2002). Statistical process control of project performance. The Journal of Defense Software Engineering, 15(3), pp. 15–18.
  31. Lipke, W., Zwikael, O., Henderson, K., & Anbari, F. (2009). Prediction of project outcome: The application of statistical methods to earned value management and earned schedule performance indexes. International Journal of Project Management, 27(4), pp. 400–407. doi: 10.1016/j.ijproman.2008.02.009.
  32. Litschmannová, M. (2015). Pravděpodobnost a statistika Vzorce a tabulky. https://homel.vsb.cz//Vzorce-a-tabulky.new
  33. Lowe, D. J., Emsley, M. W., & Harding, A. (2006). Predicting construction cost using multiple regression techniques. Journal of Construction Engineering and Management, 132(7), pp.750–758. doi: 10.1061/(ASCE)0733-9364 132:7(750).
  34. Minasowicz, A., Kostrzewa, B., & Zawistowski, J. (2011). Construction project risk control based on expertise using fuzzy set theory. Proceedings of the 28th ISARC, pp. 101–106. doi: 10.22260/ISARC2011/0015.
  35. Mizell, C., & Malone, L. (2007). A project management approach to using simulation for cost estimation on large, complex software development projects. Engineering Management Journal, 19(4), pp. 28–34. doi: 10.1080/10429247.
  36. Monkaew, S., & Nawalerspunya, T. (2015). A productivity rate in concrete plastering of exterior brick wall. King Mongkut's University of Technology North Bangkok, doi: 10.14416/j.kmutnb.2015.02.004.
  37. Narbaev, T., & De Marco, A. (2011). Cost estimate at completion methods in construction projects. 2011 2nd International Conference on Construction and Project Management, 15. doi: 10.13140/2.1.1898.3369.
  38. Nassar, K. M., Gunnarsson, H. G., & Hegad, M. Y. (2005). Using weibull analysis for evaluation of cost and schedule performance. Journal of Construction Engineering and Management, 131(12), pp. 1257–1262. doi: 10.1061/(ASCE)07339364(2005)131:12(1257).
  39. Nelson, W. B. (1990). Accelerated testing, statistical models, test plans, and data analysis. Wiley.
  40. Odesola, I. A., Okolie, K. C, & Nnametu, J. N. (2015). A comparative evaluation of labour productivity of wall plastering activity using work study. PM World Journal, 4(5), pp. 1–10.
  41. Olomolaiye, P. O., & Ogunlana, S. O. (1989). An evaluation of production outputs in key building trades in Nigeria. Construction Management and Economics, 7(1), pp. 75–86.
  42. Plybankiewicz, E. (2018). Model of predicting cost overrun in construction projects. Sustainability, 10(12), pp. 4387. doi: 10.3390/su10124387.
  43. Rad, K. G., & Kim, S. Y. (2018). Factors affecting construction labor productivity: Iran Case Study. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 42(2), pp. 165–180. doi: 10.1007/s40996-018-0095-2.
  44. Saini, H., Singh, K., & Malik, U. (2017). Project management in construction using primavera. International Journal of Civil Engineering and Technology, 8(8), pp. 538–549.
  45. Salunkhe, A. A. (2018). Assessment of Critical Construction Delay Factors, I J R. https://edupediapublications.org/journals
  46. Salunkhe, A. A., & Patil, R. S., (2013). Statistical methods for construction delay analysis. Journal of Mechanical and Civil Engineering, 9(2), pp. 58–62.
  47. San Cristóbal, J. R. (2017). The S-curve envelope as a tool for monitoring and control of projects. Procedia Computer Science, 121, pp. 756–761.
  48. Shrestha, P. P., Burns, L. A., & Shields, D. R. (2013). Magnitude of construction cost and schedule overruns in public work projects. Journal of Construction Engineering, 2013(2), doi: 10.1155/935978.
  49. Sinesilassie, E. G., Tabish, S. Z., Jha, K. N. (2016). Critical factors affecting cost performance: A case of Ethiopian public construction projects. International Journal of Construction Management, 18(2), pp. 108–119. doi: 10.1080/156235991277058.
  50. Subramani, T., & Karthick, T. M. (2018). Study on time and resource management in construction projects using MS project. International Journal of Engineering & Technology, 7(3.10), pp. 23–26.
  51. Thomas, H. R., Horman, M. J., de Souza, U. E., & Zavrski, I. (2002). Reducing variability to improve performance as a lean construction principle. Journal of Construction Engineering and Management, 128(2), pp. 144–154. doi: 10.1061/0733-9364.
  52. Urgilés, P., Claver, J., & Sebastián, M. A. (2019). Analysis of the earned value management and earned schedule techniques in complex hydroelectric power production projects: Cost and Time Forecast. Complexity, doi: 10.1155/2019/3190830.
  53. Vanhoucke, M., & Vandevoorde, S. (2007). A simulation and evaluation of earned value metrics to forecast the project duration. Journal of the Operational Research Society, 58(10), pp. 1361–1374. doi: 10.1057/palgrave.jors.2602 296.
  54. Vermo, M., & Kansal, R. (2020). Statistical analysis of delays factors in construction projects. International Journal for Research in Applied Science and Engineering Technology, 8(9).
  55. Wang, Q., Jiang, N., Gou, L., Che, M., & Zhang, R. (2006). Practical experiences of cost/schedule measure through earned value management and statistical process control. Procedure of InternationalWorkshop on Software, pp.348–354. doi: 10.1007/11754305.
  56. Zawistovski, J. (2010). Application of modified earned value method for assessing the risk and progress of construction projects. Proceedings of the 10th ICM, BMS and Techniques. Vilnius Gediminas Technical University, pp. 557–560.
DOI: https://doi.org/10.2478/otmcj-2021-0031 | Journal eISSN: 1847-6228 | Journal ISSN: 1847-5450
Language: English
Page range: 2521 - 2538
Submitted on: Mar 21, 2021
Accepted on: Sep 30, 2021
Published on: Nov 20, 2021
Published by: University of Zagreb
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Darja Kubečková, Stanislav Smugala, published by University of Zagreb
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.