References
- Abdullah, A. S., Ali, N. S., & Abdullah, P. A. (2019). Laborer's efficiency of gypsum plastering in Sulaimani city's projects. Kurdistan Journal of Applied Research (KJAR), 4(2), pp. 24–39.
- Aqlan, S. A. (2014). Impact of engineering software on construction project management in Bahrain. Applied Mechanics and Materials, 501, pp. 2614–2618.
- Asiedu, R. O., Frempong, N. K., & Alfen, H. W. (2017). Predicting likelihood of cost overrun in educational projects. Engineering, Construction and Architectural Management, 24, pp. 21–39. doi: 10.1108/ECAM-06-2015-0103.
- Barber, R. B. (2005). Understanding internally generated risks in projects. International Journal of Project Management, 23(8), pp. 584–590. doi: 10.1016/j.ijproman.
- Barraza, G. A., Back, W. E., & Mata, F. (2004). Probabilistic forecasting of project performance using stochastic S curves. Journal of Construction Engineering and Management, 130(1), pp. 25–32. doi: 10.1061/(ASCE)0733-9364.
- Briec, W., Kerstens, K., & Peypoch, N. (2012). Exact relations between four definitions of productivity indices and indicators. Bulletin of Economic Research, 64(2), pp. 265–274. doi: 10.1111/j.1467-8586.2010.00 378.
- Briš, R., & Litschmannová, M. (2004). STATISTIKA I. pro kombinované a distanční studium, Elektronické skriptum VŠB TU Ostrava. https://homel.vsb.cz/~bri10/Teaching/Statistika1
- Choi, J., & Ryu, H. G. (2015). Statistical analysis of construction productivity for highway pavement operations. KSCE Journal of Civil Engineering, 19(5), pp. 1193–1202. doi: 10.1007/s12205-014-0425-2.
- De Marco, A., Briccarello, D., & Rafele, C., (2009). Cost and schedule monitoring of industrial building projects: Case Study. Journal of Construction Engineering and Management, 135(9), pp. 853–862. doi: 10.1061/CO.1943-7862.0000055.
- Druker, E., Demangos, D., & Coleman, R. (2009). Performing statistical analysis on earned value data. International Cost Estimating & Analysis Association, https://www.iceaaonline.com/2009-ev004/
- El-Kholy, A. M. (2015). Predicting cost overrun in construction projects. International Journal of Construction Engineering and Management, 4(4), pp. 95–105. doi: 10.5923/j.ijcem.20150404.01.
- El-Maaty, A. E., & El-Kholy, A. M., Akal, A. Y. (2017). Modeling schedule overrun and cost escalation percentages of highway projects using fuzzy approach. Engineering, Construction and Architectural Management, 24(5), pp. 809–827. doi: 10.1108/ECAM-03.
- George, K. M., Park, N., & Yang, Z. (2015). A reliability measure for time series forecasting predictor. IFAC-Papers OnLine, 48(1), pp. 850–855.
- Gouett, M. C., Haas, C. T., Goodrum, P. M., & Caldas, C. H. (2011). Activity analysis for direct-work rate improvement in construction. Journal of Construction Engineering and Management, 137(12), pp. 1117–1124. doi: 10.1061/(ASCE)CO.1943-7862.0000375.
- Gerek, I. H., Erdis, E., Mistikoglu, G., & Usmen, M. A. (2016). Evaluation of plastering crew performance in building project using data envelopement analysis. Technological and Economic Development of Economy, 22(6), pp. 926–940. doi: 10.3846/20294913.2014.909903.
- Gulezian, R., & Samelian, F. (2003). Baseline determination in construction labor productivity-loss claim. Journal of Construction Engineering and Management, 19(4), pp. 160–165. doi: 10.1061/0742-597X(2003)19:4(160).
- Han, S., & Lee, T., Ko, Y. (2014). Implementation of construction performance database prototype for curtain wall operation in high-rise building construction. Journal of Asian Architecture and Building Engineering, 13(1), pp. 149–156. doi: 10.3130/jaabe.13.149.
- Hillson, D. (2004). Earned value management and risk management: A Practical Synergy. Proceedings of the PMI Global Congress, Anaheim, PMI, pp. 2250–0758.
- Idiake, J. E., & Ikemefuna, M. (2014). Improving labour performance in the management of wall plastering activity for one storey buildings in Abuja, Nigeria. Journal of Economics and Sustainable Development, 5(10).
- Jarský, Č. (2000). Automatizovaná příprava a řízení realiza ce staveb. CONTEC Kralupy n. Vlt.
- Jarský, Č. (2019). Příprava a realizace staveb, CONTEC. http://www.contec.cz [30-11-2017], Akademické nakladatelství CERM, ISBN 978-80-7204-994-3, Brno 2019.
- Ko, Y., & Han, S. (2015). Development of construction performance monitoring methodology using bayesian probabilistic approach. Journal of Asian Architecture and Building Engineering, 14(1), pp. 73–80. doi: 10.3130/jaabe.14.73.
- Khanzadi, M., & Shahbazi, M. M. (2018). Forecasting schedule relia bility using the reliability of agents’ promises. Asian Journal of Civil Engineering, 19(8), pp. 949–962. doi: 10.1007/s42107-018-0075-7.
- Khanzadi, M., Kaveh, A., Alipoura, M., & Khanmohammadi, R. (2017). Assessment of labor productivity in construction projects using system dynamic approach. Scientia Iranica, 24(6), pp. 2684–2695. doi: 10.24200/sci.2017.4164.
- Kim, B. C., & Reinschmidt, K. (2010). Probabilistic forecasting of project duration using kalman filter and the earned value method. Journal of Construction Engineering and Management, 136(8), pp. 834–843. doi: 10.1061/(ASCE)CO.1943-7862.0000192.
- Kubečková, D., & Smugala, S. (2020). Statistical methods applied to construction process management. Asian Journal of Civil Engineering, 21(3), pp. 479–494. doi: 10.1007s42107-020-00221-7.
- Kumar, A. V. S. S., & Faheem, B. (2008). Fuzzy optimization of construction project network with multiple objectives. Proceedings of the 4th International Structural Engineering and 16 Construction Conference, ISEC - 4 - Innovations in Structural Engineering and Construction, 2, pp. 1433–1437.
- Lee, D. E. (2005). Probability of project completion using stochastic project scheduling simulation (SPSS). Journal of Construction Engineering and Management, 131(3), pp. 310–318.
- Leu, S. S., & Lin, Y. C. (2008). Project performance evaluation based on statistical process control techniques. Journal of Construction Engineering and Management, 134(10), pp. 813–819. doi: 10.1061/0733-9364.
- Lipke, W. (2002). Statistical process control of project performance. The Journal of Defense Software Engineering, 15(3), pp. 15–18.
- Lipke, W., Zwikael, O., Henderson, K., & Anbari, F. (2009). Prediction of project outcome: The application of statistical methods to earned value management and earned schedule performance indexes. International Journal of Project Management, 27(4), pp. 400–407. doi: 10.1016/j.ijproman.2008.02.009.
- Litschmannová, M. (2015). Pravděpodobnost a statistika Vzorce a tabulky. https://homel.vsb.cz//Vzorce-a-tabulky.new
- Lowe, D. J., Emsley, M. W., & Harding, A. (2006). Predicting construction cost using multiple regression techniques. Journal of Construction Engineering and Management, 132(7), pp.750–758. doi: 10.1061/(ASCE)0733-9364 132:7(750).
- Minasowicz, A., Kostrzewa, B., & Zawistowski, J. (2011). Construction project risk control based on expertise using fuzzy set theory. Proceedings of the 28th ISARC, pp. 101–106. doi: 10.22260/ISARC2011/0015.
- Mizell, C., & Malone, L. (2007). A project management approach to using simulation for cost estimation on large, complex software development projects. Engineering Management Journal, 19(4), pp. 28–34. doi: 10.1080/10429247.
- Monkaew, S., & Nawalerspunya, T. (2015). A productivity rate in concrete plastering of exterior brick wall. King Mongkut's University of Technology North Bangkok, doi: 10.14416/j.kmutnb.2015.02.004.
- Narbaev, T., & De Marco, A. (2011). Cost estimate at completion methods in construction projects. 2011 2nd International Conference on Construction and Project Management, 15. doi: 10.13140/2.1.1898.3369.
- Nassar, K. M., Gunnarsson, H. G., & Hegad, M. Y. (2005). Using weibull analysis for evaluation of cost and schedule performance. Journal of Construction Engineering and Management, 131(12), pp. 1257–1262. doi: 10.1061/(ASCE)07339364(2005)131:12(1257).
- Nelson, W. B. (1990). Accelerated testing, statistical models, test plans, and data analysis. Wiley.
- Odesola, I. A., Okolie, K. C, & Nnametu, J. N. (2015). A comparative evaluation of labour productivity of wall plastering activity using work study. PM World Journal, 4(5), pp. 1–10.
- Olomolaiye, P. O., & Ogunlana, S. O. (1989). An evaluation of production outputs in key building trades in Nigeria. Construction Management and Economics, 7(1), pp. 75–86.
- Plybankiewicz, E. (2018). Model of predicting cost overrun in construction projects. Sustainability, 10(12), pp. 4387. doi: 10.3390/su10124387.
- Rad, K. G., & Kim, S. Y. (2018). Factors affecting construction labor productivity: Iran Case Study. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 42(2), pp. 165–180. doi: 10.1007/s40996-018-0095-2.
- Saini, H., Singh, K., & Malik, U. (2017). Project management in construction using primavera. International Journal of Civil Engineering and Technology, 8(8), pp. 538–549.
- Salunkhe, A. A. (2018). Assessment of Critical Construction Delay Factors, I J R. https://edupediapublications.org/journals
- Salunkhe, A. A., & Patil, R. S., (2013). Statistical methods for construction delay analysis. Journal of Mechanical and Civil Engineering, 9(2), pp. 58–62.
- San Cristóbal, J. R. (2017). The S-curve envelope as a tool for monitoring and control of projects. Procedia Computer Science, 121, pp. 756–761.
- Shrestha, P. P., Burns, L. A., & Shields, D. R. (2013). Magnitude of construction cost and schedule overruns in public work projects. Journal of Construction Engineering, 2013(2), doi: 10.1155/935978.
- Sinesilassie, E. G., Tabish, S. Z., Jha, K. N. (2016). Critical factors affecting cost performance: A case of Ethiopian public construction projects. International Journal of Construction Management, 18(2), pp. 108–119. doi: 10.1080/156235991277058.
- Subramani, T., & Karthick, T. M. (2018). Study on time and resource management in construction projects using MS project. International Journal of Engineering & Technology, 7(3.10), pp. 23–26.
- Thomas, H. R., Horman, M. J., de Souza, U. E., & Zavrski, I. (2002). Reducing variability to improve performance as a lean construction principle. Journal of Construction Engineering and Management, 128(2), pp. 144–154. doi: 10.1061/0733-9364.
- Urgilés, P., Claver, J., & Sebastián, M. A. (2019). Analysis of the earned value management and earned schedule techniques in complex hydroelectric power production projects: Cost and Time Forecast. Complexity, doi: 10.1155/2019/3190830.
- Vanhoucke, M., & Vandevoorde, S. (2007). A simulation and evaluation of earned value metrics to forecast the project duration. Journal of the Operational Research Society, 58(10), pp. 1361–1374. doi: 10.1057/palgrave.jors.2602 296.
- Vermo, M., & Kansal, R. (2020). Statistical analysis of delays factors in construction projects. International Journal for Research in Applied Science and Engineering Technology, 8(9).
- Wang, Q., Jiang, N., Gou, L., Che, M., & Zhang, R. (2006). Practical experiences of cost/schedule measure through earned value management and statistical process control. Procedure of InternationalWorkshop on Software, pp.348–354. doi: 10.1007/11754305.
- Zawistovski, J. (2010). Application of modified earned value method for assessing the risk and progress of construction projects. Proceedings of the 10th ICM, BMS and Techniques. Vilnius Gediminas Technical University, pp. 557–560.