Have a personal or library account? Click to login
Ecologically preferred types of drive systems for city buses—the context of the Polish energy mix Cover

Ecologically preferred types of drive systems for city buses—the context of the Polish energy mix

By: Anna Dubel and  Mariusz Trela  
Open Access
|Dec 2023

References

  1. Analiza kosztów i korzyści związanych z wykorzystaniem autobusów zeroemisyjnych, w celu świadczenia usług komunikacji miejskiej na terenie aglomeracji krakowskiej. [Analysis of costs and benefits related to the use of zero-emission buses to provide public transport services in the Krakow agglomeration.] Kraków 2018.
  2. Analiza kosztów i korzyści związanych z wykorzystaniem autobusów zeroemisyjnych przy świadczeniu usług komunikacji miejskiej w Zamościu. [Analysis of costs and benefits related to the use of zero-emission buses in the provision of public transport services in Zamość.] Grupa CDE Sp. z o.o., June 2021.
  3. CORREA G., MUÑOZ P.M., RODRIGUEZ C.R. 2019. A comparative energy and environmental analysis of a diesel, hybrid, hydrogen and electric urban bus. Energy 187: 115906.
  4. DADASHEV G., LEVI Y., NAHMIAS-BIRAN B. 2023. Implications of decarbonization policies using an innovative urban transport simulator. Transportation Research Part D: Transport and Environment 119: 103754.
  5. Detailed terms of the tender order: pn/02/2022 Delivery of 22 brand new, ecological, low-floor city buses with hybrid drive for PKM Katowice Sp. Z o. o.
  6. Environmental Product Declaration Solaris Urbino 12 hybrid bus.
  7. EUROPEAN COMMISSION. 2019. Handbook on the external cost of transport. https://op.europa.eu/pl/publication-detail/-/publication/9781f65f-8448-11ea-bf12-01aa75ed71a1 (access: 11.09.2022)
  8. GERBEC M., OPREŠNIK R.S., KONTIĆ D. 2015. Cost benefit analysis of three different urban bus drive systems using real driving data. Transportation Research Part D: Transport and Environment 41: 433–444.
  9. GUS. 2018. Opracowanie metodyki i oszacowanie kosztów zewnętrznych emisji zanieczyszczeń do powietrza atmosferycznego ze środków transportu drogowego na poziomie kraju. [Development of a methodology and estimation of external costs of pollutant emissions into the air from road transport means at the national level.] GUS, Szczecin 2018.
  10. GUSTAFSSON M., SVENSSON N., ANDERBERG S. 2018. Energy performance indicators as policy support for public bus transport – The case of Sweden, Transportation Research Part D: Transport and Environment 65: 697–709.
  11. HOOFTMAN N., OLIVEIRA L., MESSAGIE M., COOSEMANS T., VAN MIERLO J. 2016. Environmental analysis of petrol, diesel and electric passenger cars in a Belgian urban setting”, Energies 9/2:1–24, http://dx.doi.org/10.3390/en9020084.
  12. KOBIZE. 2022. Calorific values (WO) and CO2 emission factors (WE) in 2021 for reporting under the Emissions Trading Scheme for 2022.
  13. LÓPEZ-MARTÍNEZ J. M., JIMÉNEZ F., PÁEZ-AYUSO F. J., FLORES-HOLGADO M.N., ARENAS A.N., ARENAS-RAMIREZ B., APARICIO-IZQUIERDO F. 2017. Modelling the fuel consumption and pollutant emissions of the urban bus fleet of the city of Madrid. Transportation Research Part D: Transport and Environment 52(Part A): 112–127.
  14. MUÑOZ P., FRANCESCHINI E. A., LEVITAN D., RAMIRO RODRIGUEZ C., HUMANA T., PERELMUTER G.C. 2022. Comparative analysis of cost, emissions and fuel consumption of diesel, natural gas, electric and hydrogen urban buses. Energy Conversion and Management 257: 115412.
  15. NOPMONGCOL U., GRANT J., KNIPPING E., ALEXANDER M., SCHURHOFF R., YOUNG D., JUNG J., SHAH T., YARWOOD G. 2017. Air quality impacts of electrifying vehicles and equipment across the United States. Environmental Science and Technology 51(5), pp. 2830–2837. http://dx.doi.org/10.1021/acs.est.6b04868
  16. OECD. 2019. Air quality and health: Mortality and welfare cost from exposure to air pollution. OECD Environment Statistics (database).
  17. OECD. 2020. Non-exhaust particulate emissions from road transport. An ignored environmental policy challenge. https://www.oecd-ilibrary.org/environment/non-exhaust-particulate-emissions-from-road-transport_4a4dc6ca-en
  18. TIMMERS V., ACHTEN P. 2016. Non-exhaust PM emissions from electric vehicles. Atmospheric Environment 134: 10–17. http://dx.doi.org/10.1016/j.atmosenv.2016.03.017.
  19. WANG Y., GAN S., LI K., CHEN Y. 2022. Planning for low-carbon energy-transportation system at metropolitan scale: A case study of Beijing, China. Energy, 246, 123181. https://doi.org/10.1016/J.ENERGY.2022.123181
  20. XYLIA M., LEDUC S., LAURENT A. B., PATRIZIO, VAN DER MEER Y., KRAXNER F., SILVEIRA S. 2019. Impact of bus electrification on carbon emissions: The case of Stockholm. Journal of Cleaner Production 209: 74–87.
  21. ZALEWSKA J. 2022. Transformacja energetyczna w Polsce. [Energy transition in Poland.] Edition 2022, Forum Energii 2022.
DOI: https://doi.org/10.2478/oszn-2023-0015 | Journal eISSN: 2353-8589 | Journal ISSN: 1230-7831
Language: English
Page range: 1 - 10
Published on: Dec 31, 2023
Published by: National Research Institute, Institute of Environmental Protection
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2023 Anna Dubel, Mariusz Trela, published by National Research Institute, Institute of Environmental Protection
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.