Have a personal or library account? Click to login
The use of hydrogen as a fuel in road transport on the Polish path to climate neutrality - a literature review Cover

The use of hydrogen as a fuel in road transport on the Polish path to climate neutrality - a literature review

Open Access
|Dec 2023

References

  1. ABDELGHAFFAR A.W. 2010. Spark ignition engine fueled by Hydrogen: Comparative analysis. European Journal of Scientific Research 44: 13–28.
  2. AL-BAGHDADI M. 2020. An overview of hydrogen as an alternative fuel. Encyclopedia 2020. https://encyclopedia.pub/revision/9798/v1 (accessed on 12 June 2021).
  3. BARAŃSKA K., PETELSKI Ł. 2022. Czy wodór zastąpi w przyszłości benzynę? Nowa Energia nr 1(82).
  4. BOGUCKA M., PIKOŃ K. Współczesne problemy ochrony środowiska i energetyki 2019. Politechnika Śląska 2020.
  5. BORETTI A. 2019. Transient positive ignition internal combustion engines have now surpassed the 50% fuel conversion efficiency barrier. Int. J. Hydrogen Energy 44: 7051–7052.
  6. BRZEŻAŃSKI M., CISEK J., MAREK W., PAPUGA T. 2013. Investigation of the combustion engine fuelled with hydrogen. Combustion Engines 154(3): 1042–1048. ISSN 0138-0346.
  7. BRZEŻAŃSKI M., RODAK L. 2019. Influence of the method of creating a hydrogen-air mixture on the emission of nitrogen oxides in a spark-ignition engine. Combustion Engines 178(3): 224–227. doi: 10.19206/CE-2019-339
  8. BRZEŻAŃSKI M., RODAK L. 2019. Investigation of a new concept of hydrogen supply for a spark ignition engine. Combustion Engines 178(3): 140–143. doi: 10.19206/CE-2019-324
  9. CINIVIZ M., KOSE H. 2012. Hydrogen use in internal combustion engine: a review. International Journal of Automotive Engineering and Technologies 1: 1–15. 7
  10. DAS M. L. 2002. Hydrogen engine: research and development (R&D) programmers in Indian Institute of Technology (IIT), Delhi. International Journal of Hydrogen Energy 27: 953–965.
  11. DASZKIEWICZ P., IDZIOR M., BAJERLEIN M., KARPIUK W. 2013. Perspektywa progresu wskaźników ekologicznych silnika badawczego zasilanego olejem napędowym z domieszką wodoru. TTS 10.
  12. DIMITRIOU P., TSUJIMURA T. 2017. A review of hydrogen as a compression ignition engine fuel. Int. J. Hydrogen Energy 42: 24470–24486.
  13. EICHLSEDER H., WALLNER T., FREYMANN R., RINGLER J. 2003. The potential of hydrogen internal combustion engines in a future mobility scenario. Warrendale, PA, USA: SAE International.
  14. FAIZAL M., CHUAH L.S., LEE C., HAMEED A., LEE J., SHANKAR M. 2019. Review of hydrogen fuel for internal combustion engines. J. Mech. Eng. Res. Dev. (JMERD) 42: 35–46.
  15. FOLENTARSKA A., KULAWIK D., CIESIELSKI W., PAVLYUK V. 2016. Nowoczesne materiały do przechowywania wodoru jako paliwa przyszłości. Częstochowa 2016r.
  16. GRAFF M. 2020. Wodór jako paliwo – zalety i wady, TTS Technika Transportu Szynowego, Instytut Naukowo-Wydawniczy „TTS” Sp. z o.o, 2020, s. 18; Auto Świat. https://www.auto-swiat.pl/wiadomosci/aktualnosci/wodor-paliwo-przyszlosci-bez-przyszlosci/nt6jx7h.
  17. GUPTA B. R 2008. Hydrogen fuel production, transport and storage. CRC Press: 1–603. ISBN 978-1-4200-4575-8.
  18. HEINDL R., EICHLSEDER H., SPULLER C., GERBIG F., HELLER K. 2009. New and innovative combustion systems for the H2-ICE: compression ignition and combined processes. Warrendale, PA, USA: SAE International; SAE paper no. 2009-01-1421.
  19. HORVÁTH J., SZEMESOVÁ J. 2023. Is a carbon-neutral pathway in road transport possible? A case study from Slovakia. Sustainability 15(16): 12246. https://doi.org/10.3390/su151612246
  20. HUANG Z., WANG J., LIU B., ZENG K., YU J., JIANG D. 2006. Combustion characteristics of a direct-injection engine fueled with natural gas-hydrogen mixtures. Energy & Fuels 20: 540–546.
  21. IDZIOR M., BAJERLEIN M., BIELIŃSKI M., DASZKIEWICZ M., STOBNICKI P. 2013r. Badanie wpływu dodatku wodoru do kolektora dolotowego na emisję zanieczyszczeń stacjonarnego silnika spalinowego z bezpośrednim wtryskiem. PTNSS–2013r–SC–133.
  22. KAWAMURA A., SATO Y., NAGANUMA K., YAMANE K., TAKAGI Y. 2010. Development project of a multi-cylinder DISI hydrogen ICE System for heavy duty vehicles. Warrendale, PA, USA: SAE International; SAE paper no. 2010-01-2175.
  23. KAWAMURA A., YANAI T., SATO Y., NAGANUMA K., YAMANE K., TAKAGI Y. 2009. Summary and progress of the hydrogen ICE truck development project. Warrendale, PA, USA: SAE International; SAE paper no. 2009-01-1922.
  24. KORAKIANITIS T., NAMASIVAYAM M. A., CROOKES J. R. 2010. Hydrogen dual-fuelling of compression ignition engines with emulsified biodiesel as pilot fuel. International Journal Of Hydrogen Energy 35: 13329–13344
  25. KRUCZYŃSKI A., ŚLIĘZAK M., GIS W., ORLIŃSKI P. Ocena wpływu spalania dodatku wodoru na własności eksploatacyjne silnika o zapłonie samoczynnym. Instytut Pojazdów Politechniki Warszawskiej, Instytut Transportu Samochodowego.
  26. LEVCHENKO R. 2021. Technologie przyszłości – wodór. Archiwum Wiedzy Inżynierskiej. Tom 6(6): 43–47.
  27. MARSZAŁEK N. 2019. Wodór jako paliwo alternatywne dla transportu lotniczego. Autobusy 12.
  28. MINISTRY OF CLIMATE AND ENVIRONMENT. 2021. Polish hydrogen strategy until 2030 with an outlook until 2040. 21 Warsaw. https://www.gov.pl/web/klimat/polska-strategia-wodorowa-do-roku-2030
  29. SARAVANAN N., NAGARAJAN G. 2010. Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source. Applied Energy 87: 2218–2229
  30. SARAVANAN N., NAGARAJAN G. 2009. Performance and emission study in manifold hydrogen injection with diesel as an ignition source for different start of injection, Renewable Energy 34: 328–334.
  31. SARAVANAN N., NAGARAJAN G., SANJAY G., DHANASEKARAN C., KALAISELVAN M.K. 2008. Combustion analysis on a DI diesel engine with hydrogen in dual fuel mode. Fuel 87: 3591–3599.
  32. STĘPIEŃ Z. 2021. A comprehensive overview of hydrogen-fueled internal combustion engines: achievements and future challenges. Energies 14(20): 6504. https://doi.org/10.3390/en14206504
  33. STĘPIEŃ Z., URZĘDOWSKA W. 2021. Tłokowe silniki spalinowe zasilane wodorem – wyzwania. Nafta-Gaz 2021r 12, s.: 830–840.
  34. SZAŁEK A., PIELECHA I., CIESLIK W. 2021. Fuel cell electric vehicle (FCEV) energy flow analysis in real driving conditions (RDC). Energies 14(16): 5018. https://doi.org/10.3390/en14165018
  35. SZWAJA S., GRAB-ROGALINSKI K. 2009. Hydrogen combustion in a compression ignition diesel engine. International Journal of Hydrogen Energy 34: 4413–4421.
  36. TATAREWICZ I., SKWIERZ S., LEWARSKI M., JESZKE R., PYRKA M., SEKUŁA, M. 2023. Mapping the future of green hydrogen: Integrated analysis of Poland and the EU's development pathways to 2050. Energies 16: 6261. https://doi.org/10.3390/en16176261
  37. WAHAB ABD BIN ASWAD M. 2009. Addition of hydrogen to gasoline-fuelled 4 stroke SI engine using 1-dımensıonal analysis. Faculty of Mechanical Engineering University Malaysia Pahang: 1–68.
  38. WIĄCEK D. 2011r. Wodór jako paliwo przyszłości. Autobusy 10.
  39. EUROPEAN COMMISSION. 2020. A hydrogen strategy for climate-neutral Europe. Brussels. p. 8. https://knowledge4policy.ec.europa.eu/publication/communication-com2020301-hydrogen-strategy-climate-neutral-europe_en
  40. EUROPEAN COMMISSION. 2019. Clean energy for all Europeans package. https://energy.ec.europa.eu/topics/energy-strategy/clean-energy-all-europeans-package_en
  41. EUROPEAN COMMISSION. 2021. Fit for 55. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0550
  42. EUROPEAN COMMISSION. 2021. Fit for 55: Delivering the EU's 2030 climate target on the way to climate neutrality. Brussels. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0550
  43. EUROPEAN COMMISSION. 2020. Powering a climate-neutral economy: An EU strategy for energy system integration. Brussels. Com(2020) 299 Final. 2020, 9. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A52020DC0299
  44. EUROPEAN COMMISSION. 2022. REPowerEU: A plan to rapidly reduce dependence on Russian fossil fuels and fast forward the green transition. Brussels. p. 7. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A230%3AFIN
DOI: https://doi.org/10.2478/oszn-2023-0013 | Journal eISSN: 2353-8589 | Journal ISSN: 1230-7831
Language: English
Page range: 11 - 20
Published on: Dec 31, 2023
Published by: National Research Institute, Institute of Environmental Protection
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2023 Magdalena Zimakowska-Laskowska, Piotr Laskowski, Piotr Orliński, Piotr Wiśniowski, Marcin Wojs, published by National Research Institute, Institute of Environmental Protection
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.