References
- ABDELGHAFFAR A.W. 2010. Spark ignition engine fueled by Hydrogen: Comparative analysis. European Journal of Scientific Research 44: 13–28.
- AL-BAGHDADI M. 2020. An overview of hydrogen as an alternative fuel. Encyclopedia 2020.
https://encyclopedia.pub/revision/9798/v1 (accessed on 12 June 2021). - BARAŃSKA K., PETELSKI Ł. 2022. Czy wodór zastąpi w przyszłości benzynę? Nowa Energia nr 1(82).
- BOGUCKA M., PIKOŃ K. Współczesne problemy ochrony środowiska i energetyki 2019. Politechnika Śląska 2020.
- BORETTI A. 2019. Transient positive ignition internal combustion engines have now surpassed the 50% fuel conversion efficiency barrier. Int. J. Hydrogen Energy 44: 7051–7052.
- BRZEŻAŃSKI M., CISEK J., MAREK W., PAPUGA T. 2013. Investigation of the combustion engine fuelled with hydrogen. Combustion Engines 154(3): 1042–1048. ISSN 0138-0346.
- BRZEŻAŃSKI M., RODAK L. 2019. Influence of the method of creating a hydrogen-air mixture on the emission of nitrogen oxides in a spark-ignition engine. Combustion Engines 178(3): 224–227. doi: 10.19206/CE-2019-339
- BRZEŻAŃSKI M., RODAK L. 2019. Investigation of a new concept of hydrogen supply for a spark ignition engine. Combustion Engines 178(3): 140–143. doi: 10.19206/CE-2019-324
- CINIVIZ M., KOSE H. 2012. Hydrogen use in internal combustion engine: a review. International Journal of Automotive Engineering and Technologies 1: 1–15. 7
- DAS M. L. 2002. Hydrogen engine: research and development (R&D) programmers in Indian Institute of Technology (IIT), Delhi. International Journal of Hydrogen Energy 27: 953–965.
- DASZKIEWICZ P., IDZIOR M., BAJERLEIN M., KARPIUK W. 2013. Perspektywa progresu wskaźników ekologicznych silnika badawczego zasilanego olejem napędowym z domieszką wodoru. TTS 10.
- DIMITRIOU P., TSUJIMURA T. 2017. A review of hydrogen as a compression ignition engine fuel. Int. J. Hydrogen Energy 42: 24470–24486.
- EICHLSEDER H., WALLNER T., FREYMANN R., RINGLER J. 2003. The potential of hydrogen internal combustion engines in a future mobility scenario. Warrendale, PA, USA: SAE International.
- FAIZAL M., CHUAH L.S., LEE C., HAMEED A., LEE J., SHANKAR M. 2019. Review of hydrogen fuel for internal combustion engines. J. Mech. Eng. Res. Dev. (JMERD) 42: 35–46.
- FOLENTARSKA A., KULAWIK D., CIESIELSKI W., PAVLYUK V. 2016. Nowoczesne materiały do przechowywania wodoru jako paliwa przyszłości. Częstochowa 2016r.
- GRAFF M. 2020. Wodór jako paliwo – zalety i wady, TTS Technika Transportu Szynowego, Instytut Naukowo-Wydawniczy „TTS” Sp. z o.o, 2020, s. 18; Auto Świat.
https://www.auto-swiat.pl/wiadomosci/aktualnosci/wodor-paliwo-przyszlosci-bez-przyszlosci/nt6jx7h . - GUPTA B. R 2008. Hydrogen fuel production, transport and storage. CRC Press: 1–603. ISBN 978-1-4200-4575-8.
- HEINDL R., EICHLSEDER H., SPULLER C., GERBIG F., HELLER K. 2009. New and innovative combustion systems for the H2-ICE: compression ignition and combined processes. Warrendale, PA, USA: SAE International; SAE paper no. 2009-01-1421.
- HORVÁTH J., SZEMESOVÁ J. 2023. Is a carbon-neutral pathway in road transport possible? A case study from Slovakia. Sustainability 15(16): 12246.
https://doi.org/10.3390/su151612246 - HUANG Z., WANG J., LIU B., ZENG K., YU J., JIANG D. 2006. Combustion characteristics of a direct-injection engine fueled with natural gas-hydrogen mixtures. Energy & Fuels 20: 540–546.
- IDZIOR M., BAJERLEIN M., BIELIŃSKI M., DASZKIEWICZ M., STOBNICKI P. 2013r. Badanie wpływu dodatku wodoru do kolektora dolotowego na emisję zanieczyszczeń stacjonarnego silnika spalinowego z bezpośrednim wtryskiem. PTNSS–2013r–SC–133.
- KAWAMURA A., SATO Y., NAGANUMA K., YAMANE K., TAKAGI Y. 2010. Development project of a multi-cylinder DISI hydrogen ICE System for heavy duty vehicles. Warrendale, PA, USA: SAE International; SAE paper no. 2010-01-2175.
- KAWAMURA A., YANAI T., SATO Y., NAGANUMA K., YAMANE K., TAKAGI Y. 2009. Summary and progress of the hydrogen ICE truck development project. Warrendale, PA, USA: SAE International; SAE paper no. 2009-01-1922.
- KORAKIANITIS T., NAMASIVAYAM M. A., CROOKES J. R. 2010. Hydrogen dual-fuelling of compression ignition engines with emulsified biodiesel as pilot fuel. International Journal Of Hydrogen Energy 35: 13329–13344
- KRUCZYŃSKI A., ŚLIĘZAK M., GIS W., ORLIŃSKI P. Ocena wpływu spalania dodatku wodoru na własności eksploatacyjne silnika o zapłonie samoczynnym. Instytut Pojazdów Politechniki Warszawskiej, Instytut Transportu Samochodowego.
- LEVCHENKO R. 2021. Technologie przyszłości – wodór. Archiwum Wiedzy Inżynierskiej. Tom 6(6): 43–47.
- MARSZAŁEK N. 2019. Wodór jako paliwo alternatywne dla transportu lotniczego. Autobusy 12.
- MINISTRY OF CLIMATE AND ENVIRONMENT. 2021. Polish hydrogen strategy until 2030 with an outlook until 2040. 21 Warsaw.
https://www.gov.pl/web/klimat/polska-strategia-wodorowa-do-roku-2030 - SARAVANAN N., NAGARAJAN G. 2010. Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source. Applied Energy 87: 2218–2229
- SARAVANAN N., NAGARAJAN G. 2009. Performance and emission study in manifold hydrogen injection with diesel as an ignition source for different start of injection, Renewable Energy 34: 328–334.
- SARAVANAN N., NAGARAJAN G., SANJAY G., DHANASEKARAN C., KALAISELVAN M.K. 2008. Combustion analysis on a DI diesel engine with hydrogen in dual fuel mode. Fuel 87: 3591–3599.
- STĘPIEŃ Z. 2021. A comprehensive overview of hydrogen-fueled internal combustion engines: achievements and future challenges. Energies 14(20): 6504.
https://doi.org/10.3390/en14206504 - STĘPIEŃ Z., URZĘDOWSKA W. 2021. Tłokowe silniki spalinowe zasilane wodorem – wyzwania. Nafta-Gaz 2021r 12, s.: 830–840.
- SZAŁEK A., PIELECHA I., CIESLIK W. 2021. Fuel cell electric vehicle (FCEV) energy flow analysis in real driving conditions (RDC). Energies 14(16): 5018.
https://doi.org/10.3390/en14165018 - SZWAJA S., GRAB-ROGALINSKI K. 2009. Hydrogen combustion in a compression ignition diesel engine. International Journal of Hydrogen Energy 34: 4413–4421.
- TATAREWICZ I., SKWIERZ S., LEWARSKI M., JESZKE R., PYRKA M., SEKUŁA, M. 2023. Mapping the future of green hydrogen: Integrated analysis of Poland and the EU's development pathways to 2050. Energies 16: 6261.
https://doi.org/10.3390/en16176261 - WAHAB ABD BIN ASWAD M. 2009. Addition of hydrogen to gasoline-fuelled 4 stroke SI engine using 1-dımensıonal analysis. Faculty of Mechanical Engineering University Malaysia Pahang: 1–68.
- WIĄCEK D. 2011r. Wodór jako paliwo przyszłości. Autobusy 10.
- EUROPEAN COMMISSION. 2020. A hydrogen strategy for climate-neutral Europe. Brussels. p. 8.
https://knowledge4policy.ec.europa.eu/publication/communication-com2020301-hydrogen-strategy-climate-neutral-europe_en - EUROPEAN COMMISSION. 2019. Clean energy for all Europeans package.
https://energy.ec.europa.eu/topics/energy-strategy/clean-energy-all-europeans-package_en - EUROPEAN COMMISSION. 2021. Fit for 55.
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0550 - EUROPEAN COMMISSION. 2021. Fit for 55: Delivering the EU's 2030 climate target on the way to climate neutrality. Brussels.
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0550 - EUROPEAN COMMISSION. 2020. Powering a climate-neutral economy: An EU strategy for energy system integration. Brussels. Com(2020) 299 Final. 2020, 9.
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A52020DC0299 - EUROPEAN COMMISSION. 2022. REPowerEU: A plan to rapidly reduce dependence on Russian fossil fuels and fast forward the green transition. Brussels. p. 7.
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A230%3AFIN