Have a personal or library account? Click to login
The Use of Mosses in Biomonitoring of Air Pollution in the Terrestrial Environment: A Review Cover

The Use of Mosses in Biomonitoring of Air Pollution in the Terrestrial Environment: A Review

Open Access
|Jun 2023

References

  1. ADAMO P., CRISAFULLI P., GIORDANO S., MINGANTI V., MODENESI P., MONACI F., PITTATO E., TRETIACH M., BARGAGLI, R. 2007. Lichen and moss bags as monitoring devices in urban areas. Part II: Trace element content in living and dead biomonitors and comparison with synthetic materials. Environmental Pollution 146, 2: 392–399. <a href="https://doi.org/10.1016/j.envpol.2006.03.047" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.envpol.2006.03.047</a>
  2. ANIČIĆ M., TOMAŠEVIĆ M., TASIĆ M., RAJŠIĆ S., POPOVIĆ A., FRONTASYEVA M.V., LIERHAGEN S., STEINNES E. 2009. Monitoring of trace element atmospheric deposition using dry and wet moss bags: accumulation capacity versus exposure time. Journal of Hazardous Materials 171: 182–188. <a href="https://doi.org/10.1016/j.jhazmat.2009.05.112" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhazmat.2009.05.112</a>
  3. ARES A., ABOAL J.R., CARBALLEIRA A., GIORDANO S., ADAMO P., FERNÁNDEZ J.A. 2012. Moss bag biomonitoring: a methodological review. Science of the Total Environment 432: 143–158. <a href="https://doi.org/10.1016/j.scitotenv.2012.05.087" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.scitotenv.2012.05.087</a>
  4. ASTEL A., ASTEL K., BIZIUK M. 2008. PCA and Multidimensional Visualization Techniques United to Aid in the Bioindication of Elements from Transplanted Sphagnum Palustre Moss Exposed in the Gdansk City Area. Environmental Science and Pollution Research 15, 1: 41–50. <a href="https://doi.org/10.1065/espr2007.05.422" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1065/espr2007.05.422</a>
  5. BAHARUDDIN Z.M., ZUHAIRI A.H. 2021. Moss as bioindicators for pollution at fraser hill and cameron highland pahang Malaysia. Planning Malaysia 19, 2: 263–274.
  6. BARANDOVSKI L., STAFLOV T., SAJN R., FRONTASYEVA M., ANDONOVSKA K.V. 2020. Atmospheric heavy metal deposition in North Macedonia from 2002 to 2010 studied by moss biomonitoring technique. Atmosphere 11, 929: 1–23. <a href="https://doi.org/10.3390/atmos11090929" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/atmos11090929</a>
  7. BARGAGLI R. 2016. Moss and lichen biomonitoring of atmospheric mercury: A review. Science of the Total Environment 572: 216–231. <a href="https://doi.org/10.1016/j.scitotenv.2016.07.202" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.scitotenv.2016.07.202</a>
  8. BENÍTEZ Á., ARMIJOS L., CALVA J. 2021. Monitoring Air Quality with Transplanted Bryophytes in a Neotropical Andean City. Life, 11(8), 821. <a href="https://doi.org/10.3390/life11080821" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/life11080821</a>
  9. BERTRIM C., AHERNE J. 2023. Moss Bags as Biomonitors of Atmospheric Microplastic Deposition in Urban Environments. Biology 12, 2: 149. <a href="https://doi.org/10.3390/biology12020149" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/biology12020149</a>
  10. BIRUNGI Z., MASOLA B., ZARANYIKA M.F., NAIGAGA I., MARSHALL B. 2007. Active biomonitoring of trace heavy metals using fish (Oreochromis niloticus) as bioindicator species. The case of Nakivubo wetland along Lake Victoria. Physics and Chemistry of the Earth, Parts A/B/C 2 15–18: 1350–1358. <a href="https://doi.org/10.1016/j.pce.2007.07.034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.pce.2007.07.034</a>
  11. CAPOZZI F., GIORDANO S., ABOAL J.R., ADAMO P., BARGAGLI R., BOQUETE T., DI PALMA A., REA C., RESKI R., SPAGNUOLO V., STEINBAUER K., TRETIACH M., VARELA Z., ZECHMEISTER H., FERNÁNDEZ, J.A. 2016b. Best options for the exposure of traditional and innovative moss bags: a systematic evaluation in three European countries. Environmental Pollution 214: 362–373. <a href="https://doi.org/10.1016/j.envpol.2016.04.043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.envpol.2016.04.043</a>
  12. CAPOZZI F., GIORDANO S., DI PALMA A., SPAGNUOLO V., DE NICOLA F., ADAMO P. 2016a. Biomonitoring of atmospheric pollution by moss bags: discriminating urban-rural structure in a fragmented landscape. Chemosphere 149: 211–218. <a href="https://doi.org/10.1016/j.chemosphere.2016.01.065" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chemosphere.2016.01.065</a>
  13. CHAUDHURI S., ROY M. 2023. Global ambient air quality monitoring: Can mosses help? A systematic meta-analysis of literature about passive moss biomonitoring. Environment, Development and Sustainability. <a href="https://doi.org/10.1007/s10668-023-03043-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10668-023-03043-0</a>
  14. COMESS S., DONOVAN G., GATZIOLIS D., DEZIEL N.C. 2021. Exposure to atmospheric metals using moss bioindicators and neonatal health outcomes in Portland, Oregon. Environmental Pollution 284: 117343. <a href="https://doi.org/10.1016/j.envpol.2021.117343" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.envpol.2021.117343</a>
  15. CORONEL-TEIXEIRA R., CAÑIZA B., FRETES J., RODRÍGUEZ M., PASTEN M., ESCURRA C.M., PÉREZ-BEJARANO D. 2022. Relevant aspects on biomonitoring of heavy metal concentration in environmental air in Asunción city. Revista científica ciencias de la salud, 4(1), 75–83. <a href="https://doi.org/10.53732/rccsalud/04.01.2022.75" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.53732/rccsalud/04.01.2022.75</a>
  16. DE AGOSTINI A., CORTIS P., COGON A. 2020. Monitoring of Air Pollution by Moss Bags around an Oil Refinery: A Critical Evaluation over 16 Years. Atmosphere 11: 272. <a href="https://doi.org/10.3390/atmos11030272" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/atmos11030272</a>
  17. DEMKOVÁ L., BOBUL’SKÁ L., ÁRVAY J., JEZNÝ T., DUCSAY L. 2017. Biomonitoring of heavy metals contamination by mosses and lichens around Slovinky tailing pond (Slovakia), Journal of Environmental Science and Health, Part A 52 1: 30–36. <a href="https://doi.org/10.1080/10934529.2016.1221220" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/10934529.2016.1221220</a>
  18. DI PALMA A., ADAMO P., DOHI T., FUJIWARA K., HAGIWARA H., KITAMURA A., SAKODA A., SATO K., IIJIMA K. 2022. Testing mosses exposed in bags as biointerceptors of airborne radiocaesium after the Fukushima Dai-ichi Nuclear Power Station accident. Chemosphere 308: 136179. <a href="https://doi.org/10.1016/j.chemosphere.2022.136179" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chemosphere.2022.136179</a>
  19. DI PALMA A., CAPOZZI F., SPAGNUOLO V., GIORDANO S., ADAMO P. 2017. Atmospheric particulate matter intercepted by moss-bags: Relations to moss trace element uptake and land use. Chemosphere 176: 361–368. <a href="https://doi.org/10.1016/j.chemosphere.2017.02.120" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chemosphere.2017.02.120</a>
  20. DÍAZ-ÁLVAREZ E.A., LINDIG-CISNEROS R., DE LA BARRERA E. 2018. Biomonitors of atmospheric nitrogen deposition: potential uses and limitations. Conservation Physiology 6, 1: coy011. <a href="https://doi.org/10.1093/conphys/coy011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/conphys/coy011</a>
  21. DÍAZ-ÁLVAREZ E.A., REYES-GARCÍA C., DE LA BARRERA E. 2016. A δ15 N assessment of nitrogen deposition for the endangered epiphytic orchid Laelia speciosa from a city and an oak forest in Mexico. Journal of Plant Research 129: 863–872. <a href="https://doi.org/10.1007/s10265-016-0843-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10265-016-0843-y</a>
  22. DIENER A., MUDU P. 2021. How can vegetation protect us from air pollution? A critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective-with implications for urban planning. Science of the Total Environment 796: 148605. <a href="https://doi.org/10.1016/j.scitotenv.2021.148605" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.scitotenv.2021.148605</a>
  23. DMUCHOWSKI W., BYTNEROWICZ A. 2009. Long-term (1992–2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: Determination by chemical analysis of moss bags and leaves of Crimean linden. Environmental Pollution 157, 12: 3413–3421. <a href="https://doi.org/10.1016/j.envpol.2009.06.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.envpol.2009.06.019</a>
  24. DMUCHOWSKI W., GOZDOWSKI D., BACZEWSKA A.H. 2011a. Comparison of four bioindication methods for assessing the degree of environmental lead and cadmium pollution. Journal of Hazardous Materials 197: 109–118. <a href="https://doi.org/10.1016/j.jhazmat.2011.09.062" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhazmat.2011.09.062</a>
  25. DMUCHOWSKI W., GWOREK B., GOZDOWSKI D., BACZEWSKA A., MACIASZEK D. 2011b. Evaluation of changes in air pollution with lead, zinc, and chromium in the steel mill region in Warsaw in 1993–2008. Przemysł Chemiczny 90: 218–221. (in polish)
  26. DOAN PHAN T.D., TRINH T.T.M., KHIEM L.H., FRONTASYEVA M.V., QUYET N.H. 2018. Study of airborne trace element pollution in central and southern Vietnam using moss (Barbula indica) technique and neutron activation analysis. Asia-Pacific Journal of Atmospheric Sciences 55, 2: 247–253. <a href="https://doi.org/10.1007/s13143-018-0065-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13143-018-0065-4</a>
  27. DOŁĘGOWSKA S., GAŁUSZKA A. MIGASZEWSKI Z.M. 2021. Significance of the long-term biomonitoring studies for understanding the impact of pollutants on the environment based on a synthesis of 25-year biomonitoring in the Holy Cross Mountains, Poland. Environmental Science and Pollution Research 28: 10413–10435. <a href="https://doi.org/10.1007/s11356-020-11817-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11356-020-11817-6</a>
  28. DRAGOVIČ S., MIHAILOVIČ N. 2009. Analysis of mosses and topsoils for detecting sources of heavy metal pollution: Multivariate and enrichment factor analysis. Environmental Monitoring and Assessment 157, 1–4: 383–390. <a href="https://doi.org/10.1007/s10661-008-0543-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10661-008-0543-8</a>
  29. FERNÁNDEZ J.A., BOQUETE M.T., CARBALLEIRA A., ABOAL J.R. 2015. A critical review of protocols for moss biomonitoring of atmospheric deposition: sampling and sample preparation. Science of the Total Environment 517: 132–150. <a href="https://doi.org/10.1016/j.scitotenv.2015.02.050" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.scitotenv.2015.02.050</a>
  30. EUROPEAN ENVIRONMENT AGENCY (EEA). 2019. European Union emission inventory report 1990–2017 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). EEA report no 08/2019, Copenhagen, Denmark.
  31. FRONTASYEVA M., HARMENS H., UZHINSKIY A., CHALIGAVA O. 2020. Mosses as biomonitors of air pollution: 2015/2016 survey on heavy metals, nitrogen and POPs in Europe and beyond. In: Report of the ICP Vegetation Moss Survey Coordination Centre. Joint Institute for Nuclear Research Dubna, Russian Federation.
  32. FÜREDER L., REYNOLDS J.D. 2003. Is austropotamobiuspallipes a good bioindicator? Bulletin Français de la Pêche et de la Pisciculture 370–371: 157–163. <a href="https://doi.org/10.1051/kmae:2003011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1051/kmae:2003011</a>
  33. GIORDANO S., ADAMO P., SPAGNUOLO V., TRETIACH M., BARGAGLI R. 2013. Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: towards a harmonisation of the moss-bag technique. Chemosphere 90, 2: 292–299. <a href="https://doi.org/10.1016/j.chemosphere.2012.07.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chemosphere.2012.07.006</a>
  34. GODZIK B. 2020. Use of bioindication methods in national, regional and local monitoring in Poland - Changes in the air pollution level over several decades. Atmosphere 11, 2: 143. <a href="https://doi.org/10.3390/atmos11020143" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/atmos11020143</a>
  35. GODZIK B., SZAREK-ŁUKASZEWSKA G., KAPUSTA P., STȨPIEŃ K. 2014. PAHs concentrations in Poland using moss Pleurozium schreberi as bioindicator. Polish Botanical Journal 59, 1: 137–144. <a href="https://doi.org/10.2478/pbj-2014-0019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/pbj-2014-0019</a>
  36. GOODMAN G.T., ROBERTS T.M. 1971. Plants and soil as indicators of metals in the air. Nature 231: 287–292. <a href="https://doi.org/10.1038/231287a0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/231287a0</a>
  37. GOROVTSOV A., RAJPUT V.D., GORBOV S., VASILCHENKO N. 2017. Bioindication-based approaches for sustainable management of urban ecosystems. In: Singh R., Kumar S. (Eds.), Green Technologies and Environmental Sustainability, Springer, 203–228. <a href="https://doi.org/10.1007/978-3-319-50654-8_9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-319-50654-8_9</a>
  38. GRODZIŃSKA K. 1978. Mosses bioindicators of heavy metal pollution in Polish national parks. Water, Air, & Soil Pollution 9: 83–97. <a href="https://doi.org/10.1007/BF00185749" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/BF00185749</a>
  39. HANIFAH N.A., SANI M.S.A. 2023. Moss and Polyaromatic Hydrocarbon in Malaysia: A Recent Ten-Year Evaluation. Halalpshere 3, 1: 64–89. <a href="https://doi.org/10.31436/hs.v3i1.63" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.31436/hs.v3i1.63</a>
  40. Harmens H., Norris D.A., Steinnes E., Kubin E., Piispanen J., Alber R., et al. 2010. Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environmental Pollution 158, 10: 3144–3156. <a href="https://doi.org/10.1016/j.envpol.2010.06.039" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.envpol.2010.06.039</a>
  41. HARMENS H., NORRIS D.A., SHARPS K., MILLS, G., ALBER R., ALEKSIAYENAK Y., BLUM O., CUCUMAN S.M., DAM M., DE TAMMERMAN L. et al. 2015. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environmental Pollution 200: 93–104. <a href="https://doi.org/10.1016/j.envpol.2015.01.036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.envpol.2015.01.036</a>
  42. HERPIN U., BERLEKAMP J., MARKERT B., WOLTERBEEK B., GRODZINSKA K., SIEWERS U., LIETH H., WECKERT V. 1996. The distribution of heavy metals in a transect of the three states the Netherlands, Germany and Poland, determined with the aid of moss monitoring. The Science of the Total Environment 187: 185–198. <a href="https://doi.org/10.1016/0048-9697(96)05141-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0048-9697(96)05141-8</a>
  43. HRISTOZOVA G., MARINOVA S., FRONTASAYEVA M.V. 2019. Atmospheric deposition studies based on a 20-year period of moss biomonitoring in the Vicinity of a Leadzinc Plant. in Kardzhali, Bulgaria (1995/6–2015/16). AIP Conference Proceedings 2163: 050001. <a href="https://doi.org/10.1063/1.5130105" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.5130105</a>
  44. ILYIN I., ROZOVSKAYA O., TRAVNIKOV O., VARYGINA M., AAS W., PFAFFHUBER K.A. 2016. Assessment of heavy metal transboundary pollution, progress in model development and mercury research. EMEP Status Report, 2/2016. MCS-E & CCC, Moscow, Russia & Kjeller, Norway
  45. ITOUGA M., HAYATSU M., SATO M., TSUBOI Y., KATO Y., TOYOOKA K., SUZUKI S., NAKATSUKA S., KAWAKAMI S., KIKUCHI J., HITOSHI SAKAKIBARA H. 2017. Protonema of the moss Funaria hygrometrica can function as a lead (Pb) adsorbent. PLoS One 12: 1–19. <a href="https://doi.org/10.1371/journal.pone.0189726" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0189726</a>
  46. JIANG Y., FAN M., HU R., ZHAO J., WU Y. 2018. Mosses are better than leaves of vascular plants in monitoring atmospheric heavy metal pollution in urban areas. International Journal of Environmental Research and Public Health Public Health 15: 1105. <a href="https://doi.org/10.3390/ijerph15061105" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijerph15061105</a>
  47. JOVAN S.E., MONLEON V.C., DONOVAN G.H., GATZIOLIS D., AMACHER M.C. 2021. Small-scale distributions of polycyclic aromatic hydrocarbons in urban areas using geospatial modeling: A case study using the moss Orthotrichum lyellii in Portland, Oregon, U.S.A. Atmospheric Environmental 256: 118433. <a href="https://doi.org/10.1016/j.atmosenv.2021.118433" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.atmosenv.2021.118433</a>
  48. JOVAN S.E., ZUIDEMA C., DERRIEN M.M., BIDWELL A.L., BRINKLEY W., BARHIL R., SMITH R.J., BARNHILL R., GOULD L., RODRÍGUEZ A.J., AMACHER M.C., ABEL T.D., LOPEZ P. 2022. Heavy metals in moss guide environmental justice investigation: A case study using community science in Seattle, WA, USA. Ecosphere 13, 6: e4109. <a href="https://doi.org/10.1002/ecs2.4109" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/ecs2.4109</a>
  49. KACZMAREK K., ŚWISŁOWSKI P., RAJFUR M. 2017. The active biomonitoring using mosses as bioindicators Near Miasteczko Ślaskie. Proceedings of ECOpole 11: 507–516. <a href="https://doi.org/10.2429/proc.2017.11(2)055" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2429/proc.2017.11(2)055</a>
  50. KAPUSTA P., STAKENK M., SZAREK-LUKASZWSKA G., GODZIK B. 2020. Long-term moss monitoring of atmospheric deposition near a large steelworks reveals the growing importance of local non-industrial sources of pollution. Chemosphere 230: 29–39. <a href="https://doi.org/10.1016/j.chemosphere.2019.05.058" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chemosphere.2019.05.058</a>
  51. KOSIOR G., CIĘŻKA M., GÓRKA M., SAMECKA-CYMERMAN A., KOLON K., KEMPERS A.J., JĘDRYSEK M.O. 2015. δ34S values and S concentrations in native and transplanted Pleurozium schreberi in a heavily industrialised area. Ecotoxicology and Environmental Safety 118: 112–117. <a href="https://doi.org/10.1016/j.ecoenv.2015.04.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ecoenv.2015.04.018</a>
  52. KOSIOR G., PŘIBYLOVÁ P., VAŇKOVÁ L., KUKUČKA P., AUDY O., KLÁNOVÁ J SAMECKA-CYMERMAN A., MRÓZ L., KEMPERS A.J. 2017. Bioindication of PBDEs and PCBs by native and transplanted moss Pleurozium schreberi. Ecotoxicology and Environmental Safety 143: 136–142. <a href="https://doi.org/10.1016/j.ecoenv.2017.05.025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ecoenv.2017.05.025</a>
  53. LAZO P., KIKA A., QARRI F., BEKTESHI L., ALLAJBEU S., STAFILOV T. 2022. Air Quality Assessment by Moss Biomonitoring and Trace Metals Atmospheric Deposition. Aerosol Air Quality Research 22: 220008. <a href="https://doi.org/10.4209/aaqr.220008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4209/aaqr.220008</a>
  54. LEE J., TALLIS J. 1973. Regional and Historical Aspects of Lead Pollution in Britain. Nature 245: 216–218. <a href="https://doi.org/10.1038/245216a0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/245216a0</a>
  55. LEQUY E., MEYER C., VIENNEAU D., BERR C., GOLDBERG M., ZINS M., LEBLOND S., DE HOOGH K., JACQUEMIN B. 2022. Modeling exposure to airborne metals using moss biomonitoring in cemeteries in two urban areas around Paris and Lyon in France. Environmental Pollution 303: 119097. <a href="https://doi.org/10.1016/j.envpol.2022.119097" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.envpol.2022.119097</a>
  56. LIU X.Y., KOBA K., TAKEBAYASHI Y., LIU C.Q., FANG Y.T., YOH M. 2012. Preliminary insights into δ15N and δ18 O of nitrate in natural mosses: A new application of the denitrifier method. Environmental Pollution 162: 48–55. <a href="https://doi.org/10.1016/j.envpol.2011.09.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.envpol.2011.09.029</a>
  57. MACEDO-MIRANDA G., AVILA-PÉREZ P., GIL-VARGAS P., ZARAZÚA G., SÁNCHEZ-MEZA J.C., ZEPEDA-GÓMEZ C., TEJEDA S. 2016. Accumulation of heavy metals in mosses: a biomonitoring study. SpringerPlus 5: 715. <a href="https://doi.org/10.1186/s40064-016-2524-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s40064-016-2524-7</a>
  58. MAKINEN A. 1977. Moss-and peat-bags in air pollution monitoring. Suo 28: 79–88.
  59. MAO H.T., WANG X.M., WU N., CHEN L.X., YUAN M., HU J.C., CHEN Y.E. 2022. Temporal and spatial biomonitoring of atmospheric heavy metal pollution using moss bags in Xichang. Ecotoxicology and Environmental Safety 239: 113688. <a href="https://doi.org/10.1016/j.ecoenv.2022.113688" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ecoenv.2022.113688</a>
  60. MARKERT B.A., BREURE A.M., ZECHMEISTER H.G. 2003. Definitions, strategies and principles for bioindication/biomonitoring of the environment. Trace Metals and other Contaminants in the Environment 6: 3–39. Elsevier. <a href="https://doi.org/10.1016/S0927-5215(03)80131-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0927-5215(03)80131-5</a>
  61. MARKERT B., ABDALLAH N., AKSOY A., AMMARI T., ARIAS A., AZAIZEH H. et al. 2020. Information gain in environmental monitoring through bioindication and biomonitoring methods (“B & B technologies”) and phytoremediation processes–with special reference to the Biological System of Chemical Elements (BSCE) under specific consideration. Bioactive Compounds in Health and Disease 3, 11: 214–250. https://www.doi.org/10.31989/bchd.v3i11.760
  62. MARTIN P.S., MALLIK A.U. 2017. The status of non-vascular plants in trait-based ecosystem function studies. Perspectives in Plant Ecology, Evolution and Systematic 27, 80: 1–8. <a href="https://doi.org/10.1016/j.ppees.2017.04.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ppees.2017.04.002</a>
  63. MAXHUNI A., LAZO P., KANE S., QUARRI F., MARKU E., HARRY H. 2016. First survey of atmospheric heavy metal deposition in Kosovo using moss biomonitoring. Environmental Science and Pollution Research International 2, 1: 744–755. <a href="https://doi.org/10.1007/s11356-015-5257-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11356-015-5257-1</a>
  64. OISHI Y. 2018. Comparison of moss and pine needles as bioindicators of transboundary polycyclic aromatic hydrocarbon pollution in central Japan. Environmental Pollution 234: 330–338. <a href="https://doi.org/10.1016/j.envpol.2017.11.035" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.envpol.2017.11.035</a>
  65. OISHI Y. 2022. Moss biomonitoring using lead isotope ratios requires careful attention: Evaluation of transboundary pollutants in Japan. Atmospheric Environment 275: 119004. <a href="https://doi.org/10.1016/j.atmosenv.2022.119004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.atmosenv.2022.119004</a>
  66. OLISE F.S., OGUNDELE L.T., OLAJIRE M.A., OWOADE O.K., OLOYEDE F.A., FAWOLE O.G., EZEH G.C. 2019. Biomonitoring of environmental pollution in the vicinity of iron and steel smelters in southwestern Nigeria using transplanted lichens and mosses. Environmental Monitoring and Assessment 191: 691. <a href="https://doi.org/10.1007/s10661-019-7810-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10661-019-7810-8</a>
  67. PAKARINEN P., TOLONEN K. 1976. Regional survey of heavy metals in peat mosses (Sphagnum). Ambio 5, 1: 38–40.
  68. QARRI F., LAZO P., ALLAJBEU S., BEKTESHI L., STAFLOV T. 2019. The evaluation of air quality in Albania by moss biomonitoring and metals atmospheric deposition. Archives of Environmental Contamination and Toxicology 76: 554–571. <a href="https://doi.org/10.1007/s00244-019-00608-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00244-019-00608-x</a>
  69. ROBERTS A.W., ROBERTS E.M., HAIGLER C.H. 2012. Moss cell walls: structure and biosynthesis. Frontiers in Plant Science 3: 1–8. <a href="https://doi.org/10.3389/fpls.2012.00166" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fpls.2012.00166</a>
  70. ROBLIN B., AHERNE J. 2020. Moss as a biomonitor for the atmospheric deposition of anthropogenic microfibres. Science of the Total Environment 715: 136973. <a href="https://doi.org/10.1016/j.scitotenv.2020.136973" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.scitotenv.2020.136973</a>
  71. RUČHLING A.Ę., TYLER G. 1970. Sorption and retention of heavy metals in the woodland moss Hyalocomium splendens. Oikos 21: 248.
  72. RÜHLING A., RASMUSSEN L., PILEGAARD K., MAKINEN A, STEINNES E. 1987. Survey of Atmospheric Heavy Metal Deposition in the Nordic Countries in 1985 - Monitored by Moss Analyses. Nordisk Ministerrad, NORD 1987, 21,
  73. RÜHLING A., TYLER G. 1968. An ecological approach to the lead problem. Botaniska Notiser 121, 3: 321–342.
  74. SALO H., MÄKINEN J. 2014. Magnetic biomonitoring by moss bags for industry-derived air pollution in SW Finland. Atmospheric Environment 97: 19–27. <a href="https://doi.org/10.1016/j.atmosenv.2014.08.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.atmosenv.2014.08.003</a>
  75. SAMECKA-CYMERMAN A., KOLON K., KEMPERS A.J. 2005. Differences in Concentration of Heavy Metals Between Native and Transplanted Plagiothecium denticulatum: A Case Study of Soils Contaminated by Oil Well Exudates in South East Poland. Archives of Environmental Contamination Toxicology 49: 317–321. <a href="https://doi.org/10.1007/s00244-004-0161-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00244-004-0161-6</a>
  76. SANG N.T.M., KHIEM L.H., SON N.A. 2021. Comparison of moss bag and native moss technique in monitoring airborne particulate and toxic elements. Journal of Science and Technology Development 24, 2: 1967–1974. <a href="https://doi.org/10.32508/stdj.v24i2.2531" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.32508/stdj.v24i2.2531</a>
  77. SARKIS-ONOFRE R., CATALÁ-LÓPEZ F., AROMATARIS E., LOCKWOOD C. 2021. How to properly use the PRISMA Statement. Systematic Reviews 10: 117. <a href="https://doi.org/10.1186/s13643-021-01671-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s13643-021-01671-z</a>
  78. SCHILLIN J.S., LEHMAN M.E. 2002. Bioindication of atmospheric heavy metal deposition in the Southeastern US using the moss Thuidium delicatulum. Atmospheric Environment 36: 1611–1618. <a href="https://doi.org/10.1016/S1352-2310(02)00092-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S1352-2310(02)00092-4</a>
  79. SCHRÖDER W., NICKEL S., DREYER A., VÖLKSEN B. 2023. Accumulation of Atmospheric Metals and Nitrogen Deposition in Mosses: Temporal Development between 1990 and 2020, Comparison with Emission Data and Tree Canopy Drip Effects. Pollutants 3, 1: 89–101. <a href="https://doi.org/10.3390/pollutants3010008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/pollutants3010008</a>
  80. SHAKYA K., CHETTRI M.K., SAWIDIS T. 2012. Use of mosses for the survey of heavy metal deposition in ambient air of the Kathmandu valley applying active monitoring technique. Ecoprint 19: 17–29.
  81. SHVETSOVA M.S., KAMANINA I.Z., FRONTASYEVA M.V., MADADZADA A.I., ZINICOVSCAIA I.I., PAVLOV S.S., VERGEL K.N., YUSHIN N.S. 2019. Active Moss Biomonitoring Using the “Moss Bag Technique” in the Park of Moscow. Physics of Particles and Nuclei Letters 16: 994–1003. <a href="https://doi.org/10.1134/S1547477119060293" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1134/S1547477119060293</a>
  82. SNYDER H. 2019. Literature review as a research methodology: An overview and guidelines. The Journal of Business Research 104: 333–339. <a href="https://doi.org/10.1016/j.jbusres.2019.07.039" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jbusres.2019.07.039</a>
  83. STEINNES E. 1977. Atmospheric deposition of trace elements in Norway studied by means of moss analysis. Kjeller Report 154, Institutt for Atomenergi, Norway.
  84. ŚWISŁOWSKI P., NOWAK A., RAJFUR M. 2022. Comparison of Exposure Techniques and Vitality Assessment of Mosses in Active Biomonitoring for Their Suitability in Assessing Heavy Metal Pollution in Atmospheric Aerosol. Environmental Toxicology and Chemistry 41, 6: 1429–1438. <a href="https://doi.org/10.1002/etc.5321" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/etc.5321</a>
  85. TABORS G., BRŪMELIS G., NIKODEMUS O., DOBKEVIČA L., VILIGURS K. 2023. Decreased atmospheric deposition of heavy metals shown by long-term monitoring using the moss Pleurozium schreberi. Environmental Science and Pollution Research. <a href="https://doi.org/10.21203/rs.3.rs-2559234/v1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21203/rs.3.rs-2559234/v1</a>
  86. TAVARES H.M., VASCONCELOS M.T.S. 1996. Comparison of lead levels collected by Sphagnum auriculatum and by a low-volume aerosol sampler in the urban atmosphere of Oporto. Toxicological Environmental Chemistry 54, 1–4: 195–209. <a href="https://doi.org/10.1080/02772249609358312" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/02772249609358312</a>
  87. TRETIACH M., PITTAO E., CRISAFULLI P., ADAMO P. 2011. Influence of exposure sites on trace element enrichment in moss-bags and characterization of particles deposited on the biomonitor surface. Science of the Total Environment 409, 4: 822–830. <a href="https://doi.org/10.1016/j.scitotenv.2010.10.02" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.scitotenv.2010.10.02</a>
  88. UROŠEVIĆ M.A., LAZO P., STAFILOV T. M. NEČEMER M., BAČEVA ANDONOVSKA K., BALABANOVA B., HRISTOZOVA G., PAPAGIANNIS S., STIHI C., SULJKANOVIĆ M., ŠPIRIĆ Z., VASSILATOU V., VOGEL-MIKUŠ K. 2023. Active biomonitoring of potentially toxic elements in urban air by two distinct moss species and two analytical techniques: a pan-Southeastern European study. Air Quality, Atmosphere & Health 16: 595–612. <a href="https://doi.org/10.1007/s11869-022-01291-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11869-022-01291-z</a>
  89. VERGEL K., ZINICOVSCAIA I., YUSHIN N., CHALIGAVA O., NEKHOROSHKOV P., GROZDOV D. 2022. Moss Biomonitoring of Atmospheric Pollution with Trace Elements in the Moscow Region, Russia. Toxics 10, 2: 66. <a href="https://doi.org/10.3390/toxics10020066" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/toxics10020066</a>
  90. VUKOVIĆ G., ANIČIĆ U., ŠKRIVANJ S., MILIĆEVIĆ T., DIMITRIJEVIĆ D., TOMAŠEVIĆ M., POPOVIĆ A. 2016. Moss bag biomonitoring of airborne toxic element decrease on a small scale: a street study in Belgrade, Serbia. Science of the Total Environment 542: 394–403 <a href="https://doi.org/10.1016/j.scitotenv.2015.10.091" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.scitotenv.2015.10.091</a>
  91. WOLTERBEEK B. 2002. Biomonitoring of trace element air pollution: Principles, possibilities and perspectives. Environmental Pollution 120: 11–21. <a href="https://doi.org/10.1016/S0269-7491(02)00124-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0269-7491(02)00124-0</a>
  92. WOLTERBEEK B., SARMENTO S., VERBURG T. 2010. Is there a future for biomonitoring of elemental air pollution? A review focused on a larger-scaled health-related (epidemiological) context. Journal of Radioanalytical and Nuclear Chemistry 286: 195–210. <a href="https://doi.org/10.1007/s10967-010-0637-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10967-010-0637-y</a>
  93. YATIM N.M,. AZMAN N.I.A. 2021. Moss as bio-indicator for air quality monitoring at different air quality environment. International Journal of Engineering and Advanced Technology 10: 43–7. <a href="https://doi.org/10.35940/ijeat.E2579.0610521" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.35940/ijeat.E2579.0610521</a>
  94. YUSHIN N., CHALIGAVA O., ZINICOVSCAIA I., VERGEL K., GROZDOV D. 2020. Mosses as bioindicators of heavy metal air pollution in the lockdown period adopted to cope with the COVID-19 pandemic. Atmosphere 11, 11: 1194.
  95. ZECHMEISTER H.G., GRODZIŃSKA K., SZAREK-ŁUKASZEWSKA G. 2003. Bryophytes. In: Markert B.A., Breure H.G., Zechmeister H.G. (Eds.), Bioindicators and Biomonitors. Elsevier Science Ltd., Amsterdam, pp. 329–375.
  96. ZHONG Q., DU J., PUIGCORBÉ V., WANG J., WANG Q., DENG B., ZHANG F. 2019. Accumulation of natural and anthropogenic radionuclides in body profiles of Bryidae, a subgroup of mosses. Environmental Science and Pollution Research 26: 27872–27887. <a href="https://doi.org/10.1007/s11356-019-05993-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11356-019-05993-3</a>
  97. ZHOU X., HU R., FANG Y. 2021. Source and spatial distribution of airborne heavy metal deposition studied using mosses as biomonitors in Yancheng, China. Environmental Science and Pollution Research 28: 30758–30773. <a href="https://doi.org/10.1007/s11356-021-12814-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11356-021-12814-z</a>
  98. ZINICOVSCAIA I., HRAMCO C., CHALIGAVA O., YUSHIN N., GROZDOV D., VERGEL K., DUCA G. 2021. Accumulation of potentially toxic elements in mosses collected in the Republic of Moldova. Plants (Basel) 10, 3: 471. <a href="https://doi.org/10.3390/plants10030471" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/plants10030471</a>
DOI: https://doi.org/10.2478/oszn-2023-0005 | Journal eISSN: 2353-8589 | Journal ISSN: 1230-7831
Language: English
Page range: 19 - 30
Published on: Jun 30, 2023
Published by: National Research Institute, Institute of Environmental Protection
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2023 Aneta Helena Baczewska-Dąbrowska, Barbara Gworek, Wojciech Dmuchowski, published by National Research Institute, Institute of Environmental Protection
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.