Figure 1.

Figure 2.

Examples of the use of live mosses in biomonitoring of air pollution
| Air pollutant/deposition | Moss | Environment | Country | References |
|---|---|---|---|---|
| Native moss | ||||
| 8 elements | Hypnum cupressiforme | countryside | Albania | Qarri et al. 2019 |
| Fe, Cd, Cu, Pb, Zn | Hypnum cupressiforme | countryside | Albania | Lazo et al. 2022 |
| 37 elements | Multiple moss species | Pb-Zn smelter | Bułgaria | Hristozova et al. 2020 |
| 11 metals, N | Hylocomium splendens, Hypnum cupressiforme, Pseudoscleropodium purum | countryside | Europe, 15 countries | Harmens et al. 2015 |
| 12 metals | Grimmia pulvinata | cemeteries | France | Lequy et al. 2022 |
| 9 elements | Pseudocleropodium purum Hypnum cupressiforme | countryside | Kosowo | Maxhuni et al. 2016 |
| 6 elements | Pleurozium schreberi | countryside | Latvia | Tabors et al. 2023 |
| 35 elements | Hypnum cupressiforme | countryside | Moldova | Zinicovscaia et al. 2021 |
| Cr, Cu, Fe, Ni, Pb, V, Zn | Pleurozium schreberi, Scleropodium purum, Hypnum cupressiforme, Hylocomium splendens | countryside | Netherlands, Germany, Poland | Herpin et al. 1996 |
| 27 elements | Hypnum cupressiforme, Homalothecium lutescens, Homalothecium sericeum | countryside | North Macedonia | Barandovski et al. 2020 |
| Cd, Pb | Pleurozium schreberi | industrial | Poland | Dmuchowski et al. 2011a |
| S, δ34 S | Pleurozium schreberi | industrial | Poland | Kosior et al. 2015 |
| PAHs | Pleurozium schreberi | Industrial, | Poland | Godzik et al. 2014 |
| PBDEs, PCBs | Pleurozium schreberi | industrial | Poland | Kosior et al. 2017 |
| 17 elements | Pleurozium schreberi | countryside | Poland | Godzik 2020 |
| Cd, Cr, Cu, Fe, Ni, Pb | Pleurozium schreberi | urban | Russia | Yushin et al. 2020 |
| 34 elements | Pleurozium schreberi | urban | Russia | Vergel et al. 2022 |
| Pb isotopes, 7 metals | Hylocomium microphyllum | countryside | China | Zhou et al. 2021 |
| Radionuclides: 210Po,210Pb, 226Ra,7Be,40K,226Ra,238U,232T h,137Cs | Leptobryum pyriforme, Ditrichum pallidum, Hypnodendron reinwardtii | highway, urban, industrial | China | Zhong et al. 2019 |
| NO3− | Leskeella nervosa | urban | Japan | Liu et al. 2012 |
| Brachytheciun plumosum | mountain | |||
| Pb isotope ratios: 207Pb/206Pb,208Pb/206Pb | Calohypnum plumiforme | countryside | Japan | Oishi 2022 |
| Fe, Al | Calymperes afzelli, Acanthorrhynchium papillatum. | tropical forest | Malaysia | Baharuddin, Zuhairi 2021 |
| 30 elements | Barbula indica | urban | Vietnam | Doan Phan et al. 2018 |
| Cr, Zn, Cd, Pb | Fabriona ciliaris, Leskea angustata | countryside, urban parks | Mexico | Macedo-Miranda et al. 2016 |
| N compounds | Biaraun sp. | urban, oak forest | Mexico | Díaz-Álvarez et al. 2016 |
| 21 elements | Orthotrichum lyellii | industrial | USA | Jovan et al. 2021 |
| 22 elements | Orthotrichum lyellii | urban | USA | Comess et al. 2021 |
| PAHs | Orthotrichum lyellii | urban | USA | Jovan et al. 2022 |
| Live transplanted | ||||
| S, δ34 S | Pleurozium schreberi | industrial | Poland | Kosior, et al. 2015 |
| PBDEs, PCBs | Pleurozium schreberi | industrial | Poland | Kosior, et al. 2017 |
| 7 elements | Pleurozium schreberi | zinc smelter | Poland | Kaczmarek et al. 2017 |
| 17 elements | Sphagnum palustre | urban | Poland | Astel, et al. 2008 |
| survivability | Leucobryum glaucum | urban, forest | Malaysia | Yatim, Azman 2021 |
| 8 elements | Taxiphyllum giraldii, Thuidium sparsifolium | traffic | Nepal | Shakya et al., 2012 |
| 18 elements | moss | still mill | Nigeria | Olise et al. 2019 |
| Al, Fe, Mn, Pb, Zn | Rhacocarpus purpurascens, Sphagnum sp., Thuidium delicatulum | urban | Equator | Benítez et al. 2021 |
| As, Cd, Hg, Pb | Callicostella pallida, Versicularia versicularis, Isopterygium tenerum | traffic | Paraguay | Coronel-Teixeira et al. 2022 |
Examples of application of the moss-bag method in biomonitoring of air pollution
| Air pollutant/deposition | Moss | Environment | Country | References |
|---|---|---|---|---|
| Pb | Hypnum cupressiforme | industrial | England | Goodman ans Roberts 1971 |
| Cd, Pb, Zn | Sphagnum fallax | urban | Poland | Dmuchowski and Bytnerowicz 2009 |
| 18 elements | Hypnum cupressiforme | industrial | Italy | Tretiach et al. 2011 |
| Cd, Pb | Sphagnum fallax | industrial | Poland | Dmuchowski et al. 2001a |
| Cd, Cr, Pb | Sphagnum fallax | still mill | Poland | Dmuchowski et al. 2011b |
| 19 elements | Hypnum cupressiforme | urban | Italy | Giordano et al. 2013 |
| Particulate matter | Sphagnum papillosum | industrial | Finland | Salo and Mäkinen 2014 |
| PAHs*, 39 elements | Hypnum cupressiforme | urban | Italy | Capozzi et al. 2016a |
| 10 elements | Pseudoscleropodium purum | agricultural, urban, industrial | Austria, Italy, Spain | Capozzi et al. 2016b |
| Sb, Cu, Cr | Sphagnum girgensohnii, Hypnum cupressiforme | urban | Serbia | Vuković et al. 2016 |
| 7 elements | Pleurozium ssp, Polytrichum ssp, Rhytidiadelphus ssp. | mining | Slovakia | Demková et al. 2017 |
| Particulate matter, 23 elements | Pseudoscleropodium purum | agricultural, urban, industrial | Austria, Italy, Spain | Di Palma et al. 2017 |
| 9 elements | Sphagnum fallax, Dicranum polysetum | urban | Poland | Świsłowski et al. 2022 |
| 134Cs, 137Cs | Hypnum cupressiforme, Hypnum plumaeforme | Fukushima breakdown | Japan | Di Palma et al. 2022 |
| 12 elements | Taxiphyllum taxirameum | agricultural, urban, traffic, industrial | China | Mao et el. 2022 |
| Microplastic | Pleurozium schreberi | urban, traffic. rural | Canada | Bertrim and Aherne 2023 |
| PAHs* | Hypnum plumaeforme | urban | Malysia | Hanifah and Sani 2023 |
| 35 elements | Hypnum cupressiforme, Sphagnum girgensohnii | urban, rural | Southeastern Europe, 10 countries | Urošević et al. 2023 |
Comparing the advantages and disadvantages of biological monitoring (compiled by authors)
| Benefits | Disadvantages |
|---|---|
| Plants have a great ability to absorb and store pollutants | Plants absorb pollutants from the air and soil, which makes it difficult to interpret the results |
| Contaminants accumulated in plants or on their surface can be analysed by physical or chemical methods | The results of determining the content of pollutants in plants are not as precise as their measurements directly in the air |
| Plant research enables comprehensive and long-term measurements | Short-term fluctuations in the level of contamination distort the results |
| Plants can be used to identify sources of pollutant emissions, their dispersion and deposition | The need to use specific plant taxa |
| Relatively low cost | |
| Possibility to select a large number of measuring points over a large area | Difficulties in finding a suitable taxon in the entire study area |
| The use of plants enables a real assessment of the state of pollution and threat | It is not possible to compare the results with legal environmental pollution standards |
| Independence from the source of energy in the field. No risk of equipment damage | The condition and condition of the indicator plant depends on many factors such as climate change, pathogens, etc. |
Changes in (in %) the value of the median of elements contained in European mosses in the years 1990–2015 (100% content in 1995) (based on Frontasyeva et al_ 2020)
| Element | Median changes |
|---|---|
| Al | − 24* |
| An | − 38* |
| As | −13 |
| Cd | − 63 |
| Cr | − 24 |
| Cu | − 30 |
| Fe | − 22 |
| Pb | − 82 |
| Hg | − 2** |
| Ni | − 25 |
| V | − 57 |
| Zn | − 23 |
| N | − 1.5* |