Have a personal or library account? Click to login

Statistical analysis of data set on national reporting of emission of air pollutants. Part I: investigation of outliers / Analiza statystyczna zbioru danych pochodzącego z krajowej sprawozdawczości emisji zanieczyszczeń do powietrza, Cz. I: wykrywanie wartości odstających

Open Access
|Sep 2013

References

  1. Acuna , E & Rodrig uez , CA 2004, Meta analysis study of outlierdetection methods in classification, Technical Paper, Department of Mathematics, University of Puerto Rico at Mayaguez, Venice.
  2. Barnett , V & Lewis , T 1994, Outliers in statistical data, John Wiley.
  3. Ben-Gal, I 2005, ‘Outlier detection’ in Data mining and knowledgediscovery handbook: a complete guide for practitionersand researchers, eds O Maimon & L Rockach, Kluwer Academic Publishers, ISBN 0-387-24435-2.
  4. Dixon, WJ 1950, ‘Analysis of extreme values’, Annals of MathematicalStatistics, no. 21, pp. 488-506.10.1214/aoms/1177729747
  5. Dixon, WJ 1951, ‘Ratios involving extreme values’, Annals ofMathematical Statistics, no. 22, pp. 68-78. 10.1214/aoms/1177729693
  6. Engineering statistics handbook (ESH), Grubbs’ test for outliers n.d. Available from: <http://www.itl.nist.gov/div898/handbook/ eda/section3/eda35h1.htm>.
  7. Frey, HCH 2007a, Quantification of uncertainty in emission factors and inventories.
  8. Frey, HCh 2007b, Quantification of uncertainty in air pollutant emissions inventories.
  9. Gallardo, L, Escribano, J, Dawidowski , L, Rojas, N, de Fátima Andrade , M & Osses , M 2011, ‘Evaluation of vehicle emission inventories for carbon monoxide and nitrogen oxides for Bogotá, Buenos Aires, Santiago, and São Paulo’, AtmosphericEnvironment, doi:10.1016/j.atmosenv.2011.11.051.10.1016/j.atmosenv.2011.11.051
  10. Grubbs, F 1950, ‘Sample criteria for testing outlying observations’, Annals of Mathematical Statistics, no. 21, pp. 27-58. 10.1214/aoms/1177729885
  11. Hawkins , D 1980, Identification of outliers, Chapman and Hall.10.1007/978-94-015-3994-4
  12. IEP-NRI, NCEM, n.d. Zespół Ochrony Powietrza, 2012 Materiały szkoleniowe dla operatorów instalacji dotyczące wypełniania wniosku do Krajowej bazy o emisjach gazów cieplarnianych i innych substancji za rok 2012, Warszawa, edt. 2012 and 2013 [in Polish].
  13. Ilango , V, Subramanian , R & Vas udevan , V 2012, ‘A five step procedure for outlier analysis in data mining’, EuropeanJournal of Scientific Research, no.3, pp. 327-339, ISSN 1450-216X.
  14. Iwaniec , M 2008, Walidacja metod pomiarowych, StatSoft Polska [in Polish].
  15. Johnson, R 1992, Applied multivariate statistical analysis, Prentice Hall.
  16. Komsta , Ł 2011, “Outliers” package for CRAN-R. Available from: <http://cran.r-project.org/web/packages/outliers/index.html>.
  17. Kriegel , H-P, Kröger , P & Zimek , A 2010, ‘Outlier detection techniques’, The 2010 SIAM International Conference on DataMining.
  18. Kumari , H, Joon , V, Chandra , A & Kaushik , SC 2011, ‘Carbon monoxide and nitrogen oxide emissions from traditional and improved biomass cook stoves used in India’, in InternationalConference on Chemistry and Chemical Process, IPCBEE, vol. 10 (2011) © (2011), IACSIT Press, Singapore.
  19. [LAW1] Regulation of Polish Minister of Environment concerningthe report questionnaire and way of its input toNational Emission Database (pl: Rozporządzenie MinistraŚrodowiska z dnia 28 grudnia 2010 r. w sprawie formularzaraportu oraz sposobu jego wprowadzania do Krajowej bazyo emisjach gazów cieplarnianych i innych substancji), Dz. U. Nr 3/2011, Poz. 4 [in Polish].
  20. [LAW2] The Environmental Protection Law Act (pl: PrawoOchrony Środowiska), Dz.U. Nr 62/2001, Poz. 627 with changes entered into force after 27th of April, 2001 [in Polish].
  21. [LAW3] The law act on system of management of emissions ofGHGs and other pollutants (pl: Ustawa z dnia 17 lipca 2009r. o systemie zarządzania emisjami gazów cieplarnianychi innych substancji), Dz.U. Nr 130/2009, Poz. 1070 [in Polish].
  22. Likens , GE, Buso , DC & Butler , TJ 2005, Long-term relationships between SO2 and NOX emissions and SO4 2− and NO3 concentration in bulk deposition at the Hubbard Brook Experimental Forest, NH.10.1039/b506370a16193167
  23. Myatt , GJ 2007, Making sense of data (a practical guide to exploratorydata analysis and data mining), Wiley.10.1002/0470101024
  24. Rorabacher, D 1991, ‘Statistical treatment for rejection of deviant values: critical values of Dixon’s “Q” parameter and related subrange ratios at the 95% confidence level’, Analytical Chemistry, no. 63, pp. 139-146.10.1021/ac00002a010
DOI: https://doi.org/10.2478/oszn-2013-0020 | Journal eISSN: 2353-8589 | Journal ISSN: 1230-7831
Language: English
Page range: 45 - 51
Published on: Sep 27, 2013
Published by: National Research Institute, Institute of Environmental Protection
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2013 Damian Zasina, Jarosław Zawadzki, published by National Research Institute, Institute of Environmental Protection
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.