Ab Rahman, N. F., Wang, S. L., Ng, T. F., & Ghoneim, A. S. (2024). Artificial intelligence in education: A systematic review of machine learning for predicting student performance. Journal of Advanced Research in Applied Sciences and Engineering Technology, 54(1), 198–221. https://doi.org/10.37934/araset.54.1.198221
Abuzinadah, N., Umer, M., Ishaq, A., Al Hejaili, A., Alsubai, S., Eshmawi, A. A., Mohamed, A., & Ashraf, I. (2023). Role of convolutional features and machine learning for predicting student academic performance from MOODLE data. PLOS ONE, 18(11), e0293061. https://doi.org/10.1371/journal.pone.0293061
Akçapınar, G., Altun, A., & Aşkar, P. (2019). Using learning analytics to develop early-warning system for at-risk students. International Journal of Educational Technology in Higher Education, 16(1). https://doi.org/10.1186/s41239-019-0172-z
Asselman, A., Khaldi, M., & Aammou, S. (2021). Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interactive Learning Environments, 31(6), 3360–3379. https://doi.org/10.1080/10494820.2021.1928235
Bai, Y. (2024). Original Research Article Optimizing the design and implementation of college English teacher training—Courses on Canvas platform using data mining algorithms. Journal of Autonomous Intelligence, 7(5), 1–8. https://doi.org/10.32629/jai.v7i5.1406
Binti Baharuddin, S., Abdul Rahim, Z., & Iqbal, M. S. (2024). Impact of data mining techniques and self-regulated learning (SRL) in predicting TVET student performance: A review. International Journal of Academic Research in Business and Social Sciences, 14(10). https://doi.org/10.6007/ijarbss/v14-i10/23228
Briz-Ponce, L., Juanes-Méndez, J. A., García-Peñalvo, F. J., & Pereira, A. (2016). Effects of mobile learning in medical education: A counterfactual evaluation. Journal of Medical Systems, 40(6). https://doi.org/10.1007/s10916-016-0487-4
Chan, S., Lo, N., & Wong, A. (2024). Leveraging generative AI for enhancing university-level English writing: Comparative insights on automated feedback and student engagement. Cogent Education, 12(1). https://doi.org/10.1080/2331186x.2024.2440182
Desai, U., Ramasamy, V., & Kiper, J. (2021). Evaluation of student collaboration on canvas LMS using educational data mining techniques. Proceedings of the 2021 ACM Southeast Conference, 55–62. https://doi.org/10.1145/3409334.3452042
Dr Joel Osei-Asiamah, J. S., Dr Gurmeet singh sikh, & Dr. Abhishek Tripathi, Dr. C. S., Dr. Surendar Vaddepalli,. (2024). Towards a framework for performance management and machine learning in a higher education institution. Journal of Informatics Education and Research, 4(2). https://doi.org/10.52783/jier.v4i2.844
Hasan, R., Palaniappan, S., Raziff, A. R. A., Mahmood, S., & Sarker, K. U. (2018). Student Academic Performance Prediction by using Decision Tree Algorithm. 2018 4th International Conference on Computer and Information Sciences (ICCOINS), 1–5. https://doi.org/10.1109/iccoins.2018.8510600
Hoti, A. H., & Zenuni, X. (2024). Factors influencing student academic performance and career choices. 2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP), 1, 1–8. https://doi.org/10.1109/idap64064.2024.10710702
Hoti, A., Zenuni, X., Ajdari, J., & Ismaili, F. (2025). Predictive modeling of student success using machine learning. International Journal on Information Technologies and Security, 17(1), 37–46. https://doi.org/10.59035/cpwk8549
Hussain, M. M., Akbar, S., Hassan, S. A., Aziz, M. W., & Urooj, F. (2024a). Prediction of student’s academic performance through data mining approach. Journal of Informatics and Web Engineering, 3(1), 241–251. https://doi.org/10.33093/jiwe.2024.3.1.16
Hussain, M. M., Akbar, S., Hassan, S. A., Aziz, M. W., & Urooj, F. (2024b). Prediction of student’s academic performance through data mining approach. Journal of Informatics and Web Engineering, 3(1), 241–251. https://doi.org/10.33093/jiwe.2024.3.1.16
Jáuregui-Velarde, R., Andrade-Arenas, L., Hernandez Celis, D., Dávila-Morán, R. C., & Cabanillas-Carbonell, M. (2023). Web application with machine learning for house price prediction. International Journal of Interactive Mobile Technologies (iJIM), 17(23), 85–104. https://doi.org/10.3991/ijim.v17i23.38073
Malik, H., Chaudhary, G., & Srivastava, S. (2022). Digital transformation through advances in artificial intelligence and machine learning. Journal of Intelligent & Fuzzy Systems, 42(2), 615–622. https://doi.org/10.3233/jifs-189787
Othman, Y., Housen, N., & Nas, N. (2024). The Impact of Using Learning Management System “Blackboard” on Academic Achievement and Student Learning Motivation. Journal of International Crisis and Risk Communication Research, 7(11), 260–277.
Pallathadka, H., Wenda, A., Ramirez-Asís, E., Asís-López, M., Flores-Albornoz, J., & Phasinam, K. (2023a). Classification and prediction of student performance data using various machine learning algorithms. Materials Today: Proceedings, 80, 3782–3785. https://doi.org/10.1016/j.matpr.2021.07.382
Pallathadka, H., Wenda, A., Ramirez-Asís, E., Asís-López, M., Flores-Albornoz, J., & Phasinam, K. (2023b). Classification and prediction of student performance data using various machine learning algorithms. Materials Today: Proceedings, 80, 3782–3785. https://doi.org/10.1016/j.matpr.2021.07.382
Rogers, J. K., Mercado, T. C., & Cheng, R. (2025). Predicting student performance using Moodle data and machine learning with feature importance. Indonesian Journal of Electrical Engineering and Computer Science, 37(1), 223. https://doi.org/10.11591/ijeecs.v37.i1.pp223-231
Rubio-Arraez, S. (2022). Improving academic performance through the combination of canvas and blackboard learn platforms in master’s degree students. Edulearn Proceedings, 1, 8856–8862. https://doi.org/10.21125/edulearn.2022.2125
Sokkhey, P., & Okazaki, T. (2020). Developing Web-based Support Systems for Predicting Poor-performing Students using Educational Data Mining Techniques. International Journal of Advanced Computer Science and Applications, 11(7). https://doi.org/10.14569/ijacsa.2020.0110704
Sopegno, A., Calvo, A., Berruto, R., Busato, P., & Bocthis, D. (2016). A web mobile application for agricultural machinery cost analysis. Computers and Electronics in Agriculture, 130, 158–168. https://doi.org/10.1016/j.compag.2016.08.017