Have a personal or library account? Click to login
User Evaluation of a Machine Learning-Based Student Performance Prediction Platform Cover

User Evaluation of a Machine Learning-Based Student Performance Prediction Platform

Open Access
|Aug 2025

References

  1. Ab Rahman, N. F., Wang, S. L., Ng, T. F., & Ghoneim, A. S. (2024). Artificial intelligence in education: A systematic review of machine learning for predicting student performance. Journal of Advanced Research in Applied Sciences and Engineering Technology, 54(1), 198–221. https://doi.org/10.37934/araset.54.1.198221
  2. Abuzinadah, N., Umer, M., Ishaq, A., Al Hejaili, A., Alsubai, S., Eshmawi, A. A., Mohamed, A., & Ashraf, I. (2023). Role of convolutional features and machine learning for predicting student academic performance from MOODLE data. PLOS ONE, 18(11), e0293061. https://doi.org/10.1371/journal.pone.0293061
  3. Akçapınar, G., Altun, A., & Aşkar, P. (2019). Using learning analytics to develop early-warning system for at-risk students. International Journal of Educational Technology in Higher Education, 16(1). https://doi.org/10.1186/s41239-019-0172-z
  4. Asselman, A., Khaldi, M., & Aammou, S. (2021). Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interactive Learning Environments, 31(6), 3360–3379. https://doi.org/10.1080/10494820.2021.1928235
  5. Bai, Y. (2024). Original Research Article Optimizing the design and implementation of college English teacher training—Courses on Canvas platform using data mining algorithms. Journal of Autonomous Intelligence, 7(5), 1–8. https://doi.org/10.32629/jai.v7i5.1406
  6. Binti Baharuddin, S., Abdul Rahim, Z., & Iqbal, M. S. (2024). Impact of data mining techniques and self-regulated learning (SRL) in predicting TVET student performance: A review. International Journal of Academic Research in Business and Social Sciences, 14(10). https://doi.org/10.6007/ijarbss/v14-i10/23228
  7. Briz-Ponce, L., Juanes-Méndez, J. A., García-Peñalvo, F. J., & Pereira, A. (2016). Effects of mobile learning in medical education: A counterfactual evaluation. Journal of Medical Systems, 40(6). https://doi.org/10.1007/s10916-016-0487-4
  8. Chan, S., Lo, N., & Wong, A. (2024). Leveraging generative AI for enhancing university-level English writing: Comparative insights on automated feedback and student engagement. Cogent Education, 12(1). https://doi.org/10.1080/2331186x.2024.2440182
  9. Darko, C. (2021). An evaluation of how students use blackboard and the possible link to their grades. Sage Open, 11(4). https://doi.org/10.1177/21582440211067245
  10. Desai, U., Ramasamy, V., & Kiper, J. (2021). Evaluation of student collaboration on canvas LMS using educational data mining techniques. Proceedings of the 2021 ACM Southeast Conference, 55–62. https://doi.org/10.1145/3409334.3452042
  11. Dr Joel Osei-Asiamah, J. S., Dr Gurmeet singh sikh, & Dr. Abhishek Tripathi, Dr. C. S., Dr. Surendar Vaddepalli,. (2024). Towards a framework for performance management and machine learning in a higher education institution. Journal of Informatics Education and Research, 4(2). https://doi.org/10.52783/jier.v4i2.844
  12. Hasan, R., Palaniappan, S., Raziff, A. R. A., Mahmood, S., & Sarker, K. U. (2018). Student Academic Performance Prediction by using Decision Tree Algorithm. 2018 4th International Conference on Computer and Information Sciences (ICCOINS), 1–5. https://doi.org/10.1109/iccoins.2018.8510600
  13. Hoti, A. H., & Zenuni, X. (2024). Factors influencing student academic performance and career choices. 2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP), 1, 1–8. https://doi.org/10.1109/idap64064.2024.10710702
  14. Hoti, A., Zenuni, X., Ajdari, J., & Ismaili, F. (2025). Predictive modeling of student success using machine learning. International Journal on Information Technologies and Security, 17(1), 37–46. https://doi.org/10.59035/cpwk8549
  15. Hussain, M. M., Akbar, S., Hassan, S. A., Aziz, M. W., & Urooj, F. (2024a). Prediction of student’s academic performance through data mining approach. Journal of Informatics and Web Engineering, 3(1), 241–251. https://doi.org/10.33093/jiwe.2024.3.1.16
  16. Hussain, M. M., Akbar, S., Hassan, S. A., Aziz, M. W., & Urooj, F. (2024b). Prediction of student’s academic performance through data mining approach. Journal of Informatics and Web Engineering, 3(1), 241–251. https://doi.org/10.33093/jiwe.2024.3.1.16
  17. Inc.,, S. (2019, December 20). Streamlit • A faster way to build and share data apps. https://streamlit.io/
  18. Jáuregui-Velarde, R., Andrade-Arenas, L., Hernandez Celis, D., Dávila-Morán, R. C., & Cabanillas-Carbonell, M. (2023). Web application with machine learning for house price prediction. International Journal of Interactive Mobile Technologies (iJIM), 17(23), 85–104. https://doi.org/10.3991/ijim.v17i23.38073
  19. Malik, H., Chaudhary, G., & Srivastava, S. (2022). Digital transformation through advances in artificial intelligence and machine learning. Journal of Intelligent & Fuzzy Systems, 42(2), 615–622. https://doi.org/10.3233/jifs-189787
  20. Othman, Y., Housen, N., & Nas, N. (2024). The Impact of Using Learning Management System “Blackboard” on Academic Achievement and Student Learning Motivation. Journal of International Crisis and Risk Communication Research, 7(11), 260–277.
  21. Pallathadka, H., Wenda, A., Ramirez-Asís, E., Asís-López, M., Flores-Albornoz, J., & Phasinam, K. (2023a). Classification and prediction of student performance data using various machine learning algorithms. Materials Today: Proceedings, 80, 3782–3785. https://doi.org/10.1016/j.matpr.2021.07.382
  22. Pallathadka, H., Wenda, A., Ramirez-Asís, E., Asís-López, M., Flores-Albornoz, J., & Phasinam, K. (2023b). Classification and prediction of student performance data using various machine learning algorithms. Materials Today: Proceedings, 80, 3782–3785. https://doi.org/10.1016/j.matpr.2021.07.382
  23. Rogers, J. K., Mercado, T. C., & Cheng, R. (2025). Predicting student performance using Moodle data and machine learning with feature importance. Indonesian Journal of Electrical Engineering and Computer Science, 37(1), 223. https://doi.org/10.11591/ijeecs.v37.i1.pp223-231
  24. Rubio-Arraez, S. (2022). Improving academic performance through the combination of canvas and blackboard learn platforms in master’s degree students. Edulearn Proceedings, 1, 8856–8862. https://doi.org/10.21125/edulearn.2022.2125
  25. Sokkhey, P., & Okazaki, T. (2020). Developing Web-based Support Systems for Predicting Poor-performing Students using Educational Data Mining Techniques. International Journal of Advanced Computer Science and Applications, 11(7). https://doi.org/10.14569/ijacsa.2020.0110704
  26. Wang, J., & Yu, Y. (2025). Machine learning approach to student performance prediction of online learning. PLOS ONE, 20(1), e0299018. https://doi.org/10.1371/journal.pone.0299018
  27. Sopegno, A., Calvo, A., Berruto, R., Busato, P., & Bocthis, D. (2016). A web mobile application for agricultural machinery cost analysis. Computers and Electronics in Agriculture, 130, 158–168. https://doi.org/10.1016/j.compag.2016.08.017
DOI: https://doi.org/10.2478/orga-2025-0018 | Journal eISSN: 1581-1832 | Journal ISSN: 1318-5454
Language: English
Page range: 296 - 310
Submitted on: Jan 4, 2025
Accepted on: May 9, 2025
Published on: Aug 12, 2025
Published by: University of Maribor
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Arbër H. Hoti, Xhemal Zenuni, Mentor Hamiti, Jaumin Ajdari, published by University of Maribor
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.