The integration of machine learning in education has opened new possibilities for predicting student performance and enabling early interventions. While most of the work has been focused on prediction algorithms design and evaluations, little work has been done on user-centric evaluations.
This study evaluates a web-based platform designed for student performance prediction using various machine learning algorithms. Users, including students, professors, and career counselors, tested the platform and provided feedback on usability, accuracy, and recommendation likelihood.
Results indicate that the platform is user-friendly, requires minimal technical support, and delivers reliable predictions.
Users strongly endorsed its adoption, highlighting its potential to assist educators in identifying at-risk students and improving academic outcomes.
© 2025 Arbër H. Hoti, Xhemal Zenuni, Mentor Hamiti, Jaumin Ajdari, published by University of Maribor
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.