Have a personal or library account? Click to login
A review of emerging trends in experimental, simulation, and theoretical methods for dose calculation in radiation processing Cover

A review of emerging trends in experimental, simulation, and theoretical methods for dose calculation in radiation processing

Open Access
|Aug 2025

References

  1. Colletti, A. C., Denoya, G. I., Vaudagna, S. R., & Polenta, G. A. (2024). Novel applications of gamma irradiation on fruit processing. Curr. Food Sci. Technol. Rep., 2(1), 55–64. https://doi.org/10.1007/s43555-024-00016-w.
  2. Bisht, B., Bhatnagar, P., Gururani, P., Kumar, V., Tomar, M. S., Sinhmar, R., Rathi, N., & Kumar, S. (2021). Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables–a review. Trends Food Sci. Technol., 114, 372–385. https://doi.org/10.1016/j.tifs.2021.06.002.
  3. Chaudhary, S., Kumar, S., Kumar, V., Singh, B., & Dhiman, A. (2024). Irradiation: A tool for the sustainability of fruit and vegetable supply chain–advancements and future trends. Radiat. Phys. Chem., 217, 111511. https://doi.org/10.1016/j.radphyschem.2024.111511.
  4. Li, D., Bisel, T. T., Cooley, S. K., Ni, Y., Murphy, M. K., Spencer, M. P., Hasan, Md K., Fifield, L. S., Pharr, M., Staack, D., Huang, M., Pillai, S. D., Nichols, L., Parker, R., & Gustin, E. (2025). Gamma, electron beam and X-ray irradiation effects on polymers in an advanced bone cement mixer device. Radiat. Phys. Chem., 226, 112188. https://doi.org/10.1016/j.radphyschem.2024.112188.
  5. Akter, H., Cunningham, N., Rempoulakis, P., & Bluml, M. (2023). An overview of phytosanitary irradiation requirements for Australian pests of quarantine concern. Agriculture, 13(4), 1–15. https://doi.org/10.3390/agriculture13040771.
  6. Ihsanullah, I., & Rashid, A. (2017). Current activities in food irradiation as a sanitary and phytosanitary treatment in the Asia and the Pacific Region and a comparison with advanced countries. Food Control, 72, 345–359. https://doi.org/10.1016/j.foodcont.2016.03.011.
  7. Kuntz, F., & Strasser, A. (2016). The specifics of dosimetry for food irradiation applications. Radiat. Phys. Chem., 129, 46–49.
  8. Majer, M., Pasariček, L., & Knežević, Ž. (2024). Dose mapping of the 60Co gamma irradiation facility and a real irradiated product – Measurements and Monte Carlo simulation. Radiat. Phys. Chem., 214, 111280.
  9. Saputro, B., Saputro, A. H., & Nuraeni, N. (2024). A Monte Carlo approach for predictive tools in gamma irradiator: a review. J. Radioanal. Nucl. Chem., 0123456789. https://doi.org/10.1007/s10967-024-09871-2.
  10. Singh, M., Datta, D., & Gupta, A. (2023). Modelling and optimization of dosimeters in the product box for commissioning dosimetry at gamma irradiator using Voronoi Diagram algorithm. Radiat. Phys. Chem., 210, 111011. https://doi.org/10.1016/j.radphyschem.2023.111011.
  11. Rivadeneira, R., Kim, J., Huang, Y., Castell-Perez, M. E., & Moreira, R. (2007). A 3-D dosimeter for complex-shaped foods using electron-beam irradiation. Am. Soc. Agric. Biol. Eng., 50(5), 1751–1758.
  12. Andreo, P. (1991). Monte Carlo techniques in medical radiation physics. Phys. Med. Biol., 36(7), 861–920.
  13. Andreo, P. (2018). Monte Carlo simulations in radiotherapy dosimetry. Radiat. Oncol., 13(1), 1–15. https://doi.org/10.1186/s13014-018-1065-3.
  14. Moradi, F., Khandaker, M. U., Mahdiraji, G. A., Ung, N. M., & Bradley, D. A. (2017). Dose mapping inside a gamma irradiator measured with doped silica fibre dosimetry and Monte Carlo simulation. Radiat. Phys. Chem., 140, 107–111. https://doi.org/10.1016/j.radphyschem.2017.01.032.
  15. Belkadhi, K., Elhamdi, K., Bhar, M., & Manai, K. (2017). Dose calculation using Haar wavelets with buildup correction. Appl. Radiat. Isot., 127, 186–194. https://doi.org/10.1016/j.apradiso.2017.06.011.
  16. Zolotov, S. A., Bliznyuk, U. A., Studenikin, F. R., Borshchegovskaya, P. Y., & Krusanov, G. A. (2023). Combination of aluminum plates of different thicknesses to increase the homogeneity of radiation treatment by accelerated electrons. Phys. Part. Nucl. Lett., 20(4), 954–958.
  17. Knoll, G. F. (2010). Radiation detection and measurement (4th ed.). John Wiley & Sons.
  18. Renaud, J., Palmans, H., Sarfehnia, A., & Seuntjens, J. (2020). Absorbed dose calorimetry. Phys. Med. Biol., 65(5), 05TR02. DOI: 10.1088/1361-6560/ab4f29.
  19. McEwen, M. R., Sharpe, P. H. G., Pazos, I. M., Miller, A., Pawlak, E., Ninlaphruk, S., Zhang, Y., & Kessler, C. (2022). Supplementary comparison CCRI(I)-S3 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levels. Metrologia, 59(1A), 1–18. DOI: 10.1088/0026-1394/59/1A/06012.
  20. Muir, B. R., Cojocaru, C. D., McEwen, M. R., & Ross, C. K. (2017). Electron beam water calorimetry measurements to obtain beam quality conversion factors. Med. Phys., 44(10), 5433–5444.
  21. Miller, A. (1995). Polystyrene calorimeter for electron beam dose measurements. Radiat. Phys. Chem., 46(4/6), 1243–1246.
  22. Miller, A., & Kovacs, A. (1990). Application of calorimeters for routine and reference dosimetry at 4–10 MeV industrial electron accelerators. Radiat. Phys. Chem., 35, 774–778.
  23. Miller, A., Kovacs, A., & Kuntz, F. (2002). Development of polystyrene calorimeter for application at electron energies down to 1.5 MeV. Radiat. Phys. Chem., 63, 739–744.
  24. ISO/ASTM International. (2013). ISO/ASTM 51631: Practice for use of calorimetric dosimetry systems for electron beam dose measurements and routine dosimetry system calibration.
  25. International Atomic Energy Agency. (2002). Dosimetry for food irradiation. Vienna: IAEA. (TRS no. 409).
  26. Secerov, B., Radenkovic, M., & Dramicanin, M. (2016). Uncertainty and routine use of aerial L-alanine – electron spin resonance dosimetry system. Radiat. Meas., 89, 63–67. https://doi.org/10.1016/j.radmeas.2016.03.003.
  27. Yang, Z., Vrielinck, H., Jacobsohn, L. G., Smet, P. F., & Poelman, D. (2024). Passive dosimeters for radiation dosimetry: Materials, mechanisms, and applications. Adv. Funct. Mater., 34(41), 2406186. https://doi.org/10.1002/adfm.202406186.
  28. Mahdiraji, G. A., Ghomeishi, M., Dermosesian, E., Hashim, S., Ung, N. M., Adikan, F. R. M., & Bradley, D. A. (2015). Optical fiber based dosimeter sensor: Beyond TLD-100 limits. Sens. Actuators A-Phys., 222, 48–57. https://doi.org/10.1016/j.sna.2014.11.017.
  29. Oresegun, A., Basaif, A., Tarif, Z. H., Abdul-Rashid, H. A., Hashim, S. A., & Bradley, D. A. (2021). Radioluminescence of silica optical fibre scintillators for real-time industrial radiation dosimetry. Radiat. Phys. Chem., 188, 109684. https://doi.org/10.1016/j.radphyschem.2021.109684.
  30. Schuster, C., Kuntz, F., Strasser, A., Härtling, T., Dornich, K., & Richter, D. (2021). 3D relative dose measurement with a μm thin dosimetric layer. Radiat. Phys. Chem., 180, 109238.
  31. Schuster, C., Kuntz, F., Cloetta, D., Zeller, M., Katzmann, J., Strasser, A., Härtling, T., & Lavalle, M. (2022). Depth dose curve and surface dose measurement with a μm thin dosimetric layer. Radiat. Phys. Chem., 193, 109881. https://doi.org/10.1016/j.radphyschem.2021.109881.
  32. Rabaeh, K. A., Aljammal, S. A., Eyadeh, M. M., & Abumurad, K. M. (2021). Methyl thymol blue solution and film dosimeter for high dose measurements. Results Phys., 23, 103980. https://doi.org/10.1016/j.rinp.2021.103980.
  33. Soliman, Y. S., Abdel-Fattah, A. A., & Alkhuraiji, T. S. (2018). Radiochromic film containing poly(hexa-2,4-diynylene adipate) as a radiation dosimeter. Appl. Radiat. Isot., 141, 80–87. https://doi.org/10.1016/j.apradiso.2018.08.016.
  34. Rachmanto, A., Putri, M. A. E., Yunus, M. Y., Yunus, L., Fitriana, R., & Rahmawati, R. (2024). ESR spectroscopic analysis of fructose as a dosimeter for gamma radiation. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 557, 165551. https://doi.org/10.1016/j.nimb.2024.165551.
  35. Al-Ghamdi, H., Farah, K., Almuqrin, A., & Hosni, F. (2022). FTIR study of gamma and electron irradiated high-density polyethylene for high dose measurements. Nucl. Eng. Technol., 54(1), 255–261. https://doi.org/10.1016/j.net.2021.07.023.
  36. Khouqeer, G. A., Farah, K., Toumi, S., & Hosni, F. (2025). Electron paramagnetic resonance characterization of gamma and electron irradiated high-density polyethylene: Possible use as a high-dose dosimeter. Nucl. Eng. Technol., 103419. https://doi.org/10.1016/j.net.2024.103419.
  37. Vaiano, P., Consales, M., Casolaro, P., Campajola, L., Fienga, F., Di Capua, F., Breglio, G., Buontempo, S., Cutolo, A., & Cusano, A. (2019). A novel method for EBT3 Gafchromic films read-out at high dose levels. Phys. Med., 61, 77–84. https://doi.org/10.1016/j.ejmp.2019.04.013.
  38. Nasreddine, A., Kuntz, F., & El Bitar, Z. (2021). Absorbed dose to water determination for kilo-voltage X-rays using alanine/EPR dosimetry systems. Radiat. Phys. Chem., 180, 108938. https://doi.org/10.1016/j.radphyschem.2020.108938.
  39. Hjørringgaard, J. G., Ankjærgaard, C., Miller, A., & Andersen, C. E. (2023). Kilovoltage X-ray beam quality effect on the relative response of alanine pellet dosemeters. Radiat. Prot. Dosim., 199(14), 1605–1610. https://doi.org/10.1093/rpd/ncad008.
  40. Beigzadeh, A. M., & Vaziri, M. R. R. (2021). Z-scan dosimetry of gamma-irradiated PMMA. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 991, 165022. https://doi.org/10.1016/j.nima.2021.165022.
  41. McEwen, M., Miller, A., Pazos, I., & Sharpe, P. (2020). Determination of a consensus scaling factor to convert a Co-60-based alanine dose reading to yield the dose delivered in a high energy electron beam. Radiat. Phys. Chem., 171, 108673. https://doi.org/10.1016/j.radphyschem.2019.108673.
  42. Skowyra, M. M., Ankjærgaard, C., Yu, L., Lindvold, L. R., Skov, A. L., & Miller, A. (2022). Glass transition temperature of Risø B3 radiochromic film dosimeter and its importance on the post-irradiation heating procedure. Radiat. Phys. Chem., 194, 109982. https://doi.org/10.1016/j.radphyschem.2022.109982.
  43. Yamada, H., & Parker, A. (2022). Gafchromic TM MD-V3 and HD-V2 film response depends little on temperature at time of exposure. Radiat. Phys. Chem., 196, 1–7.
  44. Hjørringgaard, J. G., Ankjærgaard, C., Bailey, M., & Miller, A. (2020). Alanine pellet dosimeter efficiency in a 40 kV x-ray beam relative to cobalt-60. Radiat. Meas., 136, 106374. https://doi.org/10.1016/j.radmeas.2020.106374.
  45. Hjørringgaard, J. G., Ankjærgaard, C., & Andersen, C. E. (2022). The microdosimetric one-hit detector model for calculating the relative efficiency of the alanine pellet dosimeter in low energy X-ray beams. Radiat. Meas., 150, 106659. https://doi.org/10.1016/j.radmeas.2021.106659.
  46. Eychenne, L., Vander Stappen, F., Kuntz, F., Stichelbaut, F., Dossat, C., Robin-Chabanne, S., & Chatry, N. (2022). High energy X-ray fruit irradiation qualification with Monte Carlo code. Radiat. Phys. Chem., 195, 110075. https://doi.org/10.1016/j.radphyschem.2022.110075.
  47. Andreo, P., Burns, D. T., Kapsch, R. P., McEwen, M., Vatnitsky, S., Andersen, C. E., Ballester, F., Borbinha, J., Delaunay, F., Francescon, P., Hanlon, M. D., Mirzakhanian, L., Muir, B., Ojala, J., Oliver, C. P., Pimpinella, M., Pinto, M., de Prez, L. A., Seuntjens, J., Sommier, J., Teles, P., Tikkanen, J., Vijande, J., & Zink, K. (2020). Determination of consensus kQ values for megavoltage photon beams for the update of IAEA TRS-398. Phys. Med. Biol., 65(9), 095011. https://doi.org/10.1088/1361-6560/ab807b.
  48. Bourgouin, A., Schüller, A., Hackel, T., & Kranzer, R. (2020). Calorimeter for real-time dosimetry of pulsed ultra-high dose rate electron beams. Front. Phys., 8, 567340. https://doi.org/10.3389/fphy.2020.567340.
  49. Subiel, A., & Romano, F. (2023). Recent developments in absolute dosimetry for FLASH radiotherapy. Br. J. Radiol., 96(1148), 20220560. https://doi.org/10.1259/bjr.20220560.
  50. Van Hung, T., & Khac An, T. (2010). Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam. Appl. Radiat. Isot., 68(6), 1104–1107. https://doi.org/10.1016/j.apradiso.2010.01.023.
  51. Graves, S. A., Flynn, R. T., & Hyer, D. E. (2019). Dose point kernels for 2,174 radionuclides. Med. Phys., 46(11), 5284–5293. https://doi.org/10.1002/mp.13789.
  52. Papadimitroulas, P., Loudos, G., Nikiforidis, G. C., & Kagadis, G. C. (2012). A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: Comparison with other Monte Carlo codes. Med. Phys., 39(8), 5238–5247. https://doi.org/10.1118/1.4737096.
  53. Belchior, A., Botelho, M. L., Peralta, L., & Vaz, P. (2008). Dose mapping of a 60Co irradiation facility using PENELOPE and MCNPX and its validation by chemical dosimetry. Appl. Radiat. Isot., 66(4), 435–440. https://doi.org/10.1016/j.apradiso.2007.11.017.
  54. El-Ouardi, Y., Aknouch, A., Dadouch, A., Mouhib, M., & Benmessaoud, M. (2021). Monte Carlo simulation as a predictive tool to program a reloading operation of a gamma irradiator. Mosc. Univ. Phys. Bull., 76(6), 482–487. https://doi.org/10.3103/S0027134921060047.
  55. Bailey, M., Sephton, J. P., & Sharpe, P. H. G. (2009). Monte Carlo modelling and real-time dosemeter measurements of dose rate distribution at a 60Co industrial irradiation plant. Radiat. Phys. Chem., 78(7/8), 453–456. https://doi.org/10.1016/j.radphyschem.2009.03.024.
  56. Lazurik, V. T., Lazurik, V. M., Popov, G., Rogov, Y., & Zimek, Z. (2011). Information system and software for quality control of radiation processing. Warsaw: International Atomic Energy Agency; Institute of Nuclear Chemistry and Technology.
  57. Schwarz, R., Salvat, F., Sunderland, D., Azuma, M., Boutros, C., Pillai, S., Kuntz, F., Nasreddine, A., Pagh, J., Wootan, D., & Murphy, M. K. (2024). PUFFIn – A user friendly fast interface for calculating and visualizing the dose distribution in materials. Radiat. Phys. Chem., 222, 111774. https://doi.org/10.1016/j.radphyschem.2024.111774.
  58. Rafiepour, P., Sina, S., & Javad Mortazavi, S. M. (2023). A multiscale Monte Carlo simulation of irradiating a typical-size apple by low-energy X-rays and electron beams. Radiat. Phys. Chem., 212, 111016. https://doi.org/10.1016/j.radphyschem.2023.111016.
  59. Iwamoto, Y., Sato, T., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S. I., Kai, T., Matsuda, N., Hosoyamada, R., & Niita, K. (2017). Benchmark study of the recent version of the PHITS code. J. Nucl. Sci. Technol., 54(5), 617–635. https://doi.org/10.1080/00223131.2017.1297742.
  60. El-Ouardi, Y., Dadouch, A., Aknouch, A., Mouhib, M., Maghnouj, A., & Didi, A. (2020). Comparative study between Geant4, MCNP6 and experimental results against gamma radiation comes from a cobalt-60 source. Mosc. Univ. Phys. Bull., 75(5), 507–511. https://doi.org/10.3103/S0027134920050033.
  61. Moradi, F., Khandaker, M. U., Abdul Sani, S. F., Uguru, E. H., Sulieman, A., & Bradley, D. A. (2021). Feasibility study of a minibeam collimator design for a 60Co gamma irradiator. Radiat. Phys. Chem., 178, 109026. https://doi.org/10.1016/j.radphyschem.2020.109026.
  62. Aknouch, A., El-Ouardi, Y., Hamroud, L., Sebihi, R., Mouhib, M., Yjjou, M., Didi, A., & Choukri, A. (2021). A Monte Carlo study to investigate the feasibility to use the Moroccan panoramic irradiator in sterile insect technique programs. Radiat. Environ. Biophys., 60(4), 673–679. https://doi.org/10.1007/s00411-021-00934-6.
  63. Saputro, B., Saputro, A. H., Nuraeni, N., Prasetio, H., Firmansyah, O. A., Fendinugroho, & Mayditia, H. (2024). Monte Carlo simulation as precision predictive tools to find isodose curve of gamma irradiator: A preliminary study. Indones. J. Appl. Phys., 14(2), 386. https://doi.org/10.13057/ijap.v14i2.93092.
  64. Cao, V. C., Vo, A. T., Le, Q. T., Le, N. T., Duong, T. H., & Tran, H. N. (2021). Depth-dose profiles in continuous and discontinuous materials of food products and medical devices irradiated by 10 MeV electron beam. J. Radioanal. Nucl. Chem., 330(3), 609–617. https://doi.org/10.1007/s10967-021-07985-5.
  65. Kroc, T. K. (2023). Monte Carlo simulations demonstrating physics of equivalency of gamma, electronbeam, and X-ray for radiation sterilization. Radiat. Phys. Chem., 204, 110702. https://doi.org/10.1016/j.radphyschem.2022.110702.
  66. Jung, S. T., Pyo, S. H., Kang, W. G., Kim, Y. R., Kim, J. K., Kang, C. M., Nho, Y. C., & Park, J. S. (2021). Energy deposition calculation by Monte Carlo simulation in irradiation of electric cables by electron beam. Radiat. Phys. Chem., 186, 109506. https://doi.org/10.1016/j.radphyschem.2021.109506.
  67. Kim, J., Moreira, R. G., & Castell-Perez, M. E. (2010). Simulation of pathogen inactivation in whole and fresh-cut cantaloupe (Cucumis melo) using electron beam treatment. J. Food Eng., 97(3), 425–433. https://doi.org/10.1016/j.jfoodeng.2009.10.038.
  68. Kim, J., Rivadeneira, R. G., Castell-Perez, M. E., & Moreira, R. G. (2006). Development and validation of a methodology for dose calculation in electron beam irradiation of complex-shaped foods. J. Food Eng., 74(3), 359–369.
  69. Hallman, G. J., & Loaharanu, P. (2016). Phytosanitary irradiation – Development and application. Radiat. Phys. Chem., 129, 39–45. https://doi.org/10.1016/j.radphyschem.2016.08.003.
  70. Majer, M., Roguljić, M., Knežević, Ž., Starodumov, A., Ferenček, D., Brigljević, V., & Mihaljević, B. (2019). Dose mapping of the panoramic 60Co gamma irradiation facility at the Ruđer Bošković Institute – Geant4 simulation and measurements. Appl. Radiat. Isot., 154, 108824. https://doi.org/10.1016/j.apradiso.2019.108824.
  71. Kim, J., Moreira, R. G., & Castell-Perez, E. (2011). Optimizing irradiation treatment of shell eggs using simulation. J. Food Sci., 76(1), 173–177.
  72. Kim, J., Kwon, S. -H., Chung, S. -W., Kwon, S. -G., Park, J. -M., & Choi, W. -S. (2013). Understanding phytosanitary irradiation treatment of pineapple using Monte Carlo simulation. J. Biosyst. Eng., 38(2), 87–94.
  73. Kim, J., Moreira, R. G., & Castell-Perez, M. E. (2015). Improving phytosanitary irradiation treatment of mangoes using Monte Carlo simulation. J. Food Eng., 149, 137–143. https://doi.org/10.1016/jjfoodeng.2014.10.005.
  74. Kim, J., Moreira, R. G., & Castell-Perez, M. E. (2019). Determination of best pine wilt disease treatment using irradiation. J. Radiat. Res. Appl. Sci., 12(1), 269–280. https://doi.org/10.1080/16878507.2019.1650994.
  75. Kim, J., Moreira, R. G., Rivadeneira, R., & Castell-Perez, M. E. (2005). Monte Carlo-based food irradiation simulator. J. Food Process Eng., 29(1), 72–88.
  76. Kim, J., Moreira, R. G., Huang, Y., & Castell-Perez, M. E. (2007). 3-D dose distributions for optimum radiation treatment planning of complex foods. J. Food Eng., 79(1), 312–321.
  77. Kim, J. (2014). Monte Carlo simulation of phytosanitary irradiation treatment for mangosteen using MRI-based geometry. J. Biosyst. Eng., 39(3), 205–214. https://doi.org/10.5307/JBE.2014.39.3.205(2014).
  78. Peivaste, I., & Alahyarizadeh, G. (2019). Comparative study on absorbed dose distribution of potato and onion in X-ray and electron beam system by MCNPX2.6 code. Mapan, 34(1), 19–29. https://doi.org/10.1007/s12647-018-0287-z.
  79. Kataoka, N., Kawahara, D., & Sekiguchi, M. (2023). Uniform irradiation of table eggs in the shell with low-energy electron beams. Radiat. Phys. Chem., 202, 110553. https://doi.org/10.1016/j.radphyschem.2022.110553.
  80. Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S. I., Kai, T., Matsuya, Y., Matsuda, N., Hirata, Y., Sekikawa, T., Yao, L., Tsai, P. E., Ratliff, H. N., Iwase, H., Sakaki, Y., Sugihara, K., Shigyo, N., Sihver, L., & Niita, K. (2024). Recent improvements of the particle and heavy ion transport code system – PHITS version 3.33. J. Nucl. Sci. Technol., 61(1), 127–135. https://doi.org/10.1080/00223131.2023.2275736.
  81. Mannai, K., Askri, B., Loussaief, A., & Trabelsi, A. (2007). Evaluation using Geant4 of the transit dose in the Tunisian gamma irradiator for insect sterilization. Appl. Radiat. Isot., 65(6), 701–707.
  82. El-Ouardi, Y., Aknouch, A., Dadouch, A., Mouhib, M., Maghnouj, A., Benmessaoud, M., & Yjjou, M. (2023). Control of transit doses by Monte Carlo simulation inside an ionization casemate housing of a 60Co gamma irradiator. Radiat. Phys. Chem., 206, 110776. https://doi.org/10.1016/j.radphyschem.2023.110776.
  83. Shiha, M., Cygler, J. E., MacRae, R., & Heath, E. (2023). 4D Monte Carlo dose reconstructions using surface motion measurements. Phys. Med., 114, 103135. https://doi.org/10.1016/j.ejmp.2023.103135.
  84. Moon, S., Han, H., Choi, C., Shin, B., Son, G., Kim, H., Kim, S., Kim, J., Yoon, I. G., Lee, K. H., & Kim, C. H. (2024). Towards accurate dose assessment for emergency industrial radiography source retrieval operations: A preliminary study of 4D Monte Carlo dose calculations. Nucl. Eng. Technol., 56(12), 5428–5436. https://doi.org/10.1016/j.net.2024.09.004.
  85. Gholampourkashi, S., Cygler, J. E., Lavigne, B., & Heath, E. (2020). Validation of 4D Monte Carlo dose calculations using a programmable deformable lung phantom. Phys. Med., 76, 16–27. https://doi.org/10.1016/j.ejmp.2020.05.019.
  86. Loussaief, A., Trabelsi, A., & Baccari, B. (2006). Extended gamma sources modelling using multipole expansion: Application to the Tunisian gamma source load planning. Radiat. Phys. Chem., 75(4), 463–472.
  87. Loussaief, A., & Trabelsi, A. (2007). Dose mapping using multipole moments. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 580(1), 102–105.
  88. Rezaeian, P., Ataenia, V., & Shafiei, S. (2017). An analytical method based on multipole moment expansion to calculate the flux distribution in Gammacell-220. Radiat. Phys. Chem., 141, 339–345. https://doi.org/10.1016/j.radphyschem.2017.08.003.
  89. Belkadhi, K., & Manai, K. (2016). Dose calculation using a numerical method based on Haar wavelets integration. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 812, 73–80. https://doi.org/10.1016/j.nima.2015.12.057.
  90. Singh, M., & Datta, D. (2020). Development of an algorithm for gamma dose mapping in irradiated product using TOPSIS and its validation. Radiat. Phys. Chem., 177, 109123. https://doi.org/10.1016/j.radphyschem.2020.109123.
  91. Studenikin, F. R., Bliznyuk, U. A., Chernyaev, A. P., Khankin, V. V., & Krusanov, G. A. (2021). Impact of aluminum plates on uniformity of depth dose distribution in object during electron processing. Mosc. Univ. Phys. Bull., 76(1), S1–S7. https://doi.org/10.3103/S0027134922010106.
  92. Studenikin, F. R., Bliznyuk, U. A., Chernyaev, A. P., Krusanov, G. A., Nikitchenko, A. D., Zolotov, S. A., & Ipatova, V. S. (2023). Electron beam modification for improving dose uniformity in irradiated objects. Eur. Phys. J. Spec. Top., 232(10), 1631–1635. https://doi.org/10.1140/epjs/s11734-023-00886-6.
  93. Bliznyuk, U. A., Borshchegovskaya, P. Y., Zolotov, S. A., Ipatova, V. S., Krusanov, G. A., Nikitchenko, A. D., Studenikin, F. R., & Chernyaev, A. P. (2022). Determining the electron beam spectrum after passing through aluminum plates. Mosc. Univ. Phys. Bull., 77(4), 615–621. https://doi.org/10.3103/S0027134922040038.
  94. Bliznyuk, U. A., Avdyukhina, V. M., Borshchegovskaya, P. Y., Ipatova, V. S., Nikitchenko, A. D., Studenikin, F. R., & Chernyaev, A. P. (2021). Estimating the accuracy of reconstructing bichromatic spectra of electron beams from depth dose distributions. Bull. Russ. Acad. Sci. Phys., 85(10), 1108–1112. https://doi.org/10.3103/S1062873821100099.
  95. Bliznyuk, U. A., Borshchegovskaya, P. Y., Ipatova, V. S., Nikitchenko, A. D., Studenikin, F. R., & Chernyaev, P. (2022). Determining the beam spectrum of industrial electron accelerator using depth dose distribution. Bull. Russ. Acad. Sci. Phys., 86(4), 500–507. https://doi.org/10.3103/S1062873822040062.
  96. Sohrabpour, M., Hassanzadeh, M., Shahriari, M., & Sharifzadeh, M. (2002). Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry. Appl. Radiat. Isot., 57(4), 537–542. https://doi.org/10.1016/S0969-8043(02)00130-6.
  97. Sohrabpour, M., Hassanzadeh, M., Shahriari, M., & Sharifzadeh, M. (2002). Dose distribution of the IR-136 irradiator using a Monte Carlo code and comparison with dosimetry. Radiat. Phys. Chem., 63, 769–772.
  98. Raisali, G. R., & Sohrabpour, M. (1993). Application of EGS4 computer code for determination of gamma ray spectrum and dose rate distribution in Gammacell 220. Radiat. Phys. Chem., 42, 799–805.
  99. Weiss, D. E., & Stangeland, R. J. (2003). Dose prediction and process optimization in a gamma sterilization facility using 3-D Monte Carlo code. Radiat. Phys. Chem., 68(6), 947–958.
  100. Oliveira, C., Salgado, J., Botelho, M. L., & Ferreira, L. M. (2000). Dose determination by Monte Carlo – A useful tool in gamma radiation process. Radiat. Phys. Chem., 57(3/6), 667–670.
  101. Oliveira, C., Salgado, J., & Ferro De Carvalho, A. (2000). Dose rate determinations in the Portuguese gamma irradiation facility: Monte Carlo simulations and measurements. Radiat. Phys. Chem., 58(3), 279–285.
  102. Belchior, A., Botelho, M. L., & Vaz, P. (2007). Monte Carlo simulations and dosimetric studies of an irradiation facility. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 580(1), 70–72. https://doi.org/10.1016/j.nima.2007.05.040.
  103. Portugal, L., Cardoso, J., & Oliveira, C. (2010). Monte Carlo validation of the irradiator parameters of the Portuguese gamma irradiation facility after its replenishment. Appl. Radiat. Isot., 68(1), 190–195.
  104. Gharbi, F., Kadri, O., Farah, K., & Mannai, K. (2005). Validation of GEANT code of CERN as predictive tool of dose rate measurement in the Tunisian gamma irradiation facility. Radiat. Phys. Chem., 74(2), 102–110.
  105. Kadri, O., Gharbi, F., & Farah, K. (2005). Monte Carlo improvement of dose uniformity in gamma irradiation processing using the GEANT4 code. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 239(4), 391–398.
  106. Ounalli, L., Bhar, M., Mejri, A., Manai, K., Bouabidi, A., Abdallah, S. M., & Reguigui, N. (2017). Combining Monte Carlo simulations and dosimetry measurements for process control in the Tunisian Cobalt-60 irradiator after three half lives of the source. Nucl. Sci. Tech., 28(9), 1–10. https://doi.org/10.1007/s41365-017-0289-5.
  107. Kim, Y. H., & Park, J. W. (2008). Dose rate simulation of a panoramic gamma irradiator using the MCNPX code and comparison with measurements. J. Nucl. Sci. Technol., 45, 325–328. https://doi.org/10.1080/00223131.2008.10875854.
  108. Kang, C. M., Jung, S. T., Pyo, S. H., Seo, Y., Kang, W. G., Kim, J. K., Nho, Y. C., Park, J. S., & Choi, J. H. (2023). Characterization of the 2.5 MeV ELV electron accelerator electron source angular distribution using 3-D dose measurement and Monte Carlo simulations. Nucl. Eng. Technol., 55(12), 4678–4684. https://doi.org/10.1016/j.net.2023.09.004.
  109. Khattab, K., Boush, M., & Alkassiri, H. (2013). Dose mapping simulation using the MCNP code for the Syrian gamma irradiation facility and benchmarking. Ann. Nucl. Energy, 58, 110–112. https://doi.org/10.1016/j.anucene.2012.11.009.
  110. Mortuza, M. F., Lepore, L., Khedkar, K., Thangam, S., Nahar, A., Jamil, H. M., Bandi, L., & Alam, Md K. (2018). Comissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data. Radiat. Phys. Chem., 144, 256–264. https://doi.org/10.1016/j.radphyschem.2017.08.022.
  111. Gual, M. R., Milian, F. M., Mesquita, A. Z., & Pereira, C. (2017). New source models to represent the irradiation process in panoramic gamma irradiator. Appl. Radiat. Isot., 128, 175–182. https://doi.org/10.1016/j.apradiso.2017.06.046.
  112. Gual, M. R., Mesquita, A. Z., Ribeiro, E., & Grossi, P. A. (2017). Shielding verifications for a gamma irradiation facility considering the installation of a new automatic product loading system. Sci. Technol. Nucl. Install., 2017, 1–6. https://doi.org/10.1155/2017/7408645.
  113. Gual, M. R., Pereira, C., & Mesquita, A. Z. (2019). Application of a new source model of a panoramic gamma irradiator on dose map formation in an irradiated product. Appl. Radiat. Isot., 144, 87–92. https://doi.org/10.1016/j.apradiso.2018.12.002.
  114. Aknouch, A., Elouardi, Y., Mouhib, M., Sebihi, R., Didi, A., & Choukri, A. (2020). New approach to make cylindrical packaging products in rotation around their fixed axis during irradiation in the Monte Carlo simulation. Mosc. Univ. Phys. Bull., 75(5), 447–450. https://doi.org/10.3103/S0027134920050045.
  115. Aknouch, A., Mouhib, M., Sebihi, R., Didi, A., El-Ouardi, Y., Boubekraoui, A., & Choukri, A. (2020). Monte Carlo simulation of the dose rate distribution of a Moroccan panoramic gamma irradiator using the MCNPX code. Mosc. Univ. Phys. Bull., 75(1), 35–38. https://doi.org/10.3103/S0027134920010026.
  116. Kataoka, N., Kawahara, D., & Sekiguchi, M. (2021). Surface treatment of eggshells with low-energy electron beam. J. Radiat. Prot. Res., 46(1), 8–13. https://doi.org/10.14407/JRPR.2020.
DOI: https://doi.org/10.2478/nuka-2025-0007 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 59 - 77
Submitted on: Mar 10, 2025
Accepted on: May 7, 2025
Published on: Aug 22, 2025
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Okky A. Firmansyah, Budhy Kurniawan, Bimo Saputro, Marta Walo, Urszula Gryczka, Nunung Nuraeni, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.