References
- Colletti, A. C., Denoya, G. I., Vaudagna, S. R., & Polenta, G. A. (2024). Novel applications of gamma irradiation on fruit processing. Curr. Food Sci. Technol. Rep., 2(1), 55–64.
https://doi.org/10.1007/s43555-024-00016-w. - Bisht, B., Bhatnagar, P., Gururani, P., Kumar, V., Tomar, M. S., Sinhmar, R., Rathi, N., & Kumar, S. (2021). Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables–a review. Trends Food Sci. Technol., 114, 372–385.
https://doi.org/10.1016/j.tifs.2021.06.002. - Chaudhary, S., Kumar, S., Kumar, V., Singh, B., & Dhiman, A. (2024). Irradiation: A tool for the sustainability of fruit and vegetable supply chain–advancements and future trends. Radiat. Phys. Chem., 217, 111511.
https://doi.org/10.1016/j.radphyschem.2024.111511. - Li, D., Bisel, T. T., Cooley, S. K., Ni, Y., Murphy, M. K., Spencer, M. P., Hasan, Md K., Fifield, L. S., Pharr, M., Staack, D., Huang, M., Pillai, S. D., Nichols, L., Parker, R., & Gustin, E. (2025). Gamma, electron beam and X-ray irradiation effects on polymers in an advanced bone cement mixer device. Radiat. Phys. Chem., 226, 112188.
https://doi.org/10.1016/j.radphyschem.2024.112188. - Akter, H., Cunningham, N., Rempoulakis, P., & Bluml, M. (2023). An overview of phytosanitary irradiation requirements for Australian pests of quarantine concern. Agriculture, 13(4), 1–15.
https://doi.org/10.3390/agriculture13040771. - Ihsanullah, I., & Rashid, A. (2017). Current activities in food irradiation as a sanitary and phytosanitary treatment in the Asia and the Pacific Region and a comparison with advanced countries. Food Control, 72, 345–359.
https://doi.org/10.1016/j.foodcont.2016.03.011. - Kuntz, F., & Strasser, A. (2016). The specifics of dosimetry for food irradiation applications. Radiat. Phys. Chem., 129, 46–49.
- Majer, M., Pasariček, L., & Knežević, Ž. (2024). Dose mapping of the 60Co gamma irradiation facility and a real irradiated product – Measurements and Monte Carlo simulation. Radiat. Phys. Chem., 214, 111280.
- Saputro, B., Saputro, A. H., & Nuraeni, N. (2024). A Monte Carlo approach for predictive tools in gamma irradiator: a review. J. Radioanal. Nucl. Chem., 0123456789.
https://doi.org/10.1007/s10967-024-09871-2. - Singh, M., Datta, D., & Gupta, A. (2023). Modelling and optimization of dosimeters in the product box for commissioning dosimetry at gamma irradiator using Voronoi Diagram algorithm. Radiat. Phys. Chem., 210, 111011.
https://doi.org/10.1016/j.radphyschem.2023.111011. - Rivadeneira, R., Kim, J., Huang, Y., Castell-Perez, M. E., & Moreira, R. (2007). A 3-D dosimeter for complex-shaped foods using electron-beam irradiation. Am. Soc. Agric. Biol. Eng., 50(5), 1751–1758.
- Andreo, P. (1991). Monte Carlo techniques in medical radiation physics. Phys. Med. Biol., 36(7), 861–920.
- Andreo, P. (2018). Monte Carlo simulations in radiotherapy dosimetry. Radiat. Oncol., 13(1), 1–15.
https://doi.org/10.1186/s13014-018-1065-3. - Moradi, F., Khandaker, M. U., Mahdiraji, G. A., Ung, N. M., & Bradley, D. A. (2017). Dose mapping inside a gamma irradiator measured with doped silica fibre dosimetry and Monte Carlo simulation. Radiat. Phys. Chem., 140, 107–111.
https://doi.org/10.1016/j.radphyschem.2017.01.032. - Belkadhi, K., Elhamdi, K., Bhar, M., & Manai, K. (2017). Dose calculation using Haar wavelets with buildup correction. Appl. Radiat. Isot., 127, 186–194.
https://doi.org/10.1016/j.apradiso.2017.06.011. - Zolotov, S. A., Bliznyuk, U. A., Studenikin, F. R., Borshchegovskaya, P. Y., & Krusanov, G. A. (2023). Combination of aluminum plates of different thicknesses to increase the homogeneity of radiation treatment by accelerated electrons. Phys. Part. Nucl. Lett., 20(4), 954–958.
- Knoll, G. F. (2010). Radiation detection and measurement (4th ed.). John Wiley & Sons.
- Renaud, J., Palmans, H., Sarfehnia, A., & Seuntjens, J. (2020). Absorbed dose calorimetry. Phys. Med. Biol., 65(5), 05TR02. DOI: 10.1088/1361-6560/ab4f29.
- McEwen, M. R., Sharpe, P. H. G., Pazos, I. M., Miller, A., Pawlak, E., Ninlaphruk, S., Zhang, Y., & Kessler, C. (2022). Supplementary comparison CCRI(I)-S3 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levels. Metrologia, 59(1A), 1–18. DOI: 10.1088/0026-1394/59/1A/06012.
- Muir, B. R., Cojocaru, C. D., McEwen, M. R., & Ross, C. K. (2017). Electron beam water calorimetry measurements to obtain beam quality conversion factors. Med. Phys., 44(10), 5433–5444.
- Miller, A. (1995). Polystyrene calorimeter for electron beam dose measurements. Radiat. Phys. Chem., 46(4/6), 1243–1246.
- Miller, A., & Kovacs, A. (1990). Application of calorimeters for routine and reference dosimetry at 4–10 MeV industrial electron accelerators. Radiat. Phys. Chem., 35, 774–778.
- Miller, A., Kovacs, A., & Kuntz, F. (2002). Development of polystyrene calorimeter for application at electron energies down to 1.5 MeV. Radiat. Phys. Chem., 63, 739–744.
- ISO/ASTM International. (2013). ISO/ASTM 51631: Practice for use of calorimetric dosimetry systems for electron beam dose measurements and routine dosimetry system calibration.
- International Atomic Energy Agency. (2002). Dosimetry for food irradiation. Vienna: IAEA. (TRS no. 409).
- Secerov, B., Radenkovic, M., & Dramicanin, M. (2016). Uncertainty and routine use of aerial L-alanine – electron spin resonance dosimetry system. Radiat. Meas., 89, 63–67.
https://doi.org/10.1016/j.radmeas.2016.03.003. - Yang, Z., Vrielinck, H., Jacobsohn, L. G., Smet, P. F., & Poelman, D. (2024). Passive dosimeters for radiation dosimetry: Materials, mechanisms, and applications. Adv. Funct. Mater., 34(41), 2406186.
https://doi.org/10.1002/adfm.202406186. - Mahdiraji, G. A., Ghomeishi, M., Dermosesian, E., Hashim, S., Ung, N. M., Adikan, F. R. M., & Bradley, D. A. (2015). Optical fiber based dosimeter sensor: Beyond TLD-100 limits. Sens. Actuators A-Phys., 222, 48–57.
https://doi.org/10.1016/j.sna.2014.11.017. - Oresegun, A., Basaif, A., Tarif, Z. H., Abdul-Rashid, H. A., Hashim, S. A., & Bradley, D. A. (2021). Radioluminescence of silica optical fibre scintillators for real-time industrial radiation dosimetry. Radiat. Phys. Chem., 188, 109684.
https://doi.org/10.1016/j.radphyschem.2021.109684. - Schuster, C., Kuntz, F., Strasser, A., Härtling, T., Dornich, K., & Richter, D. (2021). 3D relative dose measurement with a μm thin dosimetric layer. Radiat. Phys. Chem., 180, 109238.
- Schuster, C., Kuntz, F., Cloetta, D., Zeller, M., Katzmann, J., Strasser, A., Härtling, T., & Lavalle, M. (2022). Depth dose curve and surface dose measurement with a μm thin dosimetric layer. Radiat. Phys. Chem., 193, 109881.
https://doi.org/10.1016/j.radphyschem.2021.109881. - Rabaeh, K. A., Aljammal, S. A., Eyadeh, M. M., & Abumurad, K. M. (2021). Methyl thymol blue solution and film dosimeter for high dose measurements. Results Phys., 23, 103980.
https://doi.org/10.1016/j.rinp.2021.103980. - Soliman, Y. S., Abdel-Fattah, A. A., & Alkhuraiji, T. S. (2018). Radiochromic film containing poly(hexa-2,4-diynylene adipate) as a radiation dosimeter. Appl. Radiat. Isot., 141, 80–87.
https://doi.org/10.1016/j.apradiso.2018.08.016. - Rachmanto, A., Putri, M. A. E., Yunus, M. Y., Yunus, L., Fitriana, R., & Rahmawati, R. (2024). ESR spectroscopic analysis of fructose as a dosimeter for gamma radiation. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 557, 165551.
https://doi.org/10.1016/j.nimb.2024.165551. - Al-Ghamdi, H., Farah, K., Almuqrin, A., & Hosni, F. (2022). FTIR study of gamma and electron irradiated high-density polyethylene for high dose measurements. Nucl. Eng. Technol., 54(1), 255–261.
https://doi.org/10.1016/j.net.2021.07.023. - Khouqeer, G. A., Farah, K., Toumi, S., & Hosni, F. (2025). Electron paramagnetic resonance characterization of gamma and electron irradiated high-density polyethylene: Possible use as a high-dose dosimeter. Nucl. Eng. Technol., 103419.
https://doi.org/10.1016/j.net.2024.103419. - Vaiano, P., Consales, M., Casolaro, P., Campajola, L., Fienga, F., Di Capua, F., Breglio, G., Buontempo, S., Cutolo, A., & Cusano, A. (2019). A novel method for EBT3 Gafchromic films read-out at high dose levels. Phys. Med., 61, 77–84.
https://doi.org/10.1016/j.ejmp.2019.04.013. - Nasreddine, A., Kuntz, F., & El Bitar, Z. (2021). Absorbed dose to water determination for kilo-voltage X-rays using alanine/EPR dosimetry systems. Radiat. Phys. Chem., 180, 108938.
https://doi.org/10.1016/j.radphyschem.2020.108938. - Hjørringgaard, J. G., Ankjærgaard, C., Miller, A., & Andersen, C. E. (2023). Kilovoltage X-ray beam quality effect on the relative response of alanine pellet dosemeters. Radiat. Prot. Dosim., 199(14), 1605–1610.
https://doi.org/10.1093/rpd/ncad008. - Beigzadeh, A. M., & Vaziri, M. R. R. (2021). Z-scan dosimetry of gamma-irradiated PMMA. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 991, 165022.
https://doi.org/10.1016/j.nima.2021.165022. - McEwen, M., Miller, A., Pazos, I., & Sharpe, P. (2020). Determination of a consensus scaling factor to convert a Co-60-based alanine dose reading to yield the dose delivered in a high energy electron beam. Radiat. Phys. Chem., 171, 108673.
https://doi.org/10.1016/j.radphyschem.2019.108673. - Skowyra, M. M., Ankjærgaard, C., Yu, L., Lindvold, L. R., Skov, A. L., & Miller, A. (2022). Glass transition temperature of Risø B3 radiochromic film dosimeter and its importance on the post-irradiation heating procedure. Radiat. Phys. Chem., 194, 109982.
https://doi.org/10.1016/j.radphyschem.2022.109982. - Yamada, H., & Parker, A. (2022). Gafchromic TM MD-V3 and HD-V2 film response depends little on temperature at time of exposure. Radiat. Phys. Chem., 196, 1–7.
- Hjørringgaard, J. G., Ankjærgaard, C., Bailey, M., & Miller, A. (2020). Alanine pellet dosimeter efficiency in a 40 kV x-ray beam relative to cobalt-60. Radiat. Meas., 136, 106374.
https://doi.org/10.1016/j.radmeas.2020.106374. - Hjørringgaard, J. G., Ankjærgaard, C., & Andersen, C. E. (2022). The microdosimetric one-hit detector model for calculating the relative efficiency of the alanine pellet dosimeter in low energy X-ray beams. Radiat. Meas., 150, 106659.
https://doi.org/10.1016/j.radmeas.2021.106659. - Eychenne, L., Vander Stappen, F., Kuntz, F., Stichelbaut, F., Dossat, C., Robin-Chabanne, S., & Chatry, N. (2022). High energy X-ray fruit irradiation qualification with Monte Carlo code. Radiat. Phys. Chem., 195, 110075.
https://doi.org/10.1016/j.radphyschem.2022.110075. - Andreo, P., Burns, D. T., Kapsch, R. P., McEwen, M., Vatnitsky, S., Andersen, C. E., Ballester, F., Borbinha, J., Delaunay, F., Francescon, P., Hanlon, M. D., Mirzakhanian, L., Muir, B., Ojala, J., Oliver, C. P., Pimpinella, M., Pinto, M., de Prez, L. A., Seuntjens, J., Sommier, J., Teles, P., Tikkanen, J., Vijande, J., & Zink, K. (2020). Determination of consensus kQ values for megavoltage photon beams for the update of IAEA TRS-398. Phys. Med. Biol., 65(9), 095011.
https://doi.org/10.1088/1361-6560/ab807b. - Bourgouin, A., Schüller, A., Hackel, T., & Kranzer, R. (2020). Calorimeter for real-time dosimetry of pulsed ultra-high dose rate electron beams. Front. Phys., 8, 567340.
https://doi.org/10.3389/fphy.2020.567340. - Subiel, A., & Romano, F. (2023). Recent developments in absolute dosimetry for FLASH radiotherapy. Br. J. Radiol., 96(1148), 20220560.
https://doi.org/10.1259/bjr.20220560. - Van Hung, T., & Khac An, T. (2010). Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam. Appl. Radiat. Isot., 68(6), 1104–1107.
https://doi.org/10.1016/j.apradiso.2010.01.023. - Graves, S. A., Flynn, R. T., & Hyer, D. E. (2019). Dose point kernels for 2,174 radionuclides. Med. Phys., 46(11), 5284–5293.
https://doi.org/10.1002/mp.13789. - Papadimitroulas, P., Loudos, G., Nikiforidis, G. C., & Kagadis, G. C. (2012). A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: Comparison with other Monte Carlo codes. Med. Phys., 39(8), 5238–5247.
https://doi.org/10.1118/1.4737096. - Belchior, A., Botelho, M. L., Peralta, L., & Vaz, P. (2008). Dose mapping of a 60Co irradiation facility using PENELOPE and MCNPX and its validation by chemical dosimetry. Appl. Radiat. Isot., 66(4), 435–440.
https://doi.org/10.1016/j.apradiso.2007.11.017. - El-Ouardi, Y., Aknouch, A., Dadouch, A., Mouhib, M., & Benmessaoud, M. (2021). Monte Carlo simulation as a predictive tool to program a reloading operation of a gamma irradiator. Mosc. Univ. Phys. Bull., 76(6), 482–487.
https://doi.org/10.3103/S0027134921060047. - Bailey, M., Sephton, J. P., & Sharpe, P. H. G. (2009). Monte Carlo modelling and real-time dosemeter measurements of dose rate distribution at a 60Co industrial irradiation plant. Radiat. Phys. Chem., 78(7/8), 453–456.
https://doi.org/10.1016/j.radphyschem.2009.03.024. - Lazurik, V. T., Lazurik, V. M., Popov, G., Rogov, Y., & Zimek, Z. (2011). Information system and software for quality control of radiation processing. Warsaw: International Atomic Energy Agency; Institute of Nuclear Chemistry and Technology.
- Schwarz, R., Salvat, F., Sunderland, D., Azuma, M., Boutros, C., Pillai, S., Kuntz, F., Nasreddine, A., Pagh, J., Wootan, D., & Murphy, M. K. (2024). PUFFIn – A user friendly fast interface for calculating and visualizing the dose distribution in materials. Radiat. Phys. Chem., 222, 111774.
https://doi.org/10.1016/j.radphyschem.2024.111774. - Rafiepour, P., Sina, S., & Javad Mortazavi, S. M. (2023). A multiscale Monte Carlo simulation of irradiating a typical-size apple by low-energy X-rays and electron beams. Radiat. Phys. Chem., 212, 111016.
https://doi.org/10.1016/j.radphyschem.2023.111016. - Iwamoto, Y., Sato, T., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S. I., Kai, T., Matsuda, N., Hosoyamada, R., & Niita, K. (2017). Benchmark study of the recent version of the PHITS code. J. Nucl. Sci. Technol., 54(5), 617–635.
https://doi.org/10.1080/00223131.2017.1297742. - El-Ouardi, Y., Dadouch, A., Aknouch, A., Mouhib, M., Maghnouj, A., & Didi, A. (2020). Comparative study between Geant4, MCNP6 and experimental results against gamma radiation comes from a cobalt-60 source. Mosc. Univ. Phys. Bull., 75(5), 507–511.
https://doi.org/10.3103/S0027134920050033. - Moradi, F., Khandaker, M. U., Abdul Sani, S. F., Uguru, E. H., Sulieman, A., & Bradley, D. A. (2021). Feasibility study of a minibeam collimator design for a 60Co gamma irradiator. Radiat. Phys. Chem., 178, 109026.
https://doi.org/10.1016/j.radphyschem.2020.109026. - Aknouch, A., El-Ouardi, Y., Hamroud, L., Sebihi, R., Mouhib, M., Yjjou, M., Didi, A., & Choukri, A. (2021). A Monte Carlo study to investigate the feasibility to use the Moroccan panoramic irradiator in sterile insect technique programs. Radiat. Environ. Biophys., 60(4), 673–679.
https://doi.org/10.1007/s00411-021-00934-6. - Saputro, B., Saputro, A. H., Nuraeni, N., Prasetio, H., Firmansyah, O. A., Fendinugroho, & Mayditia, H. (2024). Monte Carlo simulation as precision predictive tools to find isodose curve of gamma irradiator: A preliminary study. Indones. J. Appl. Phys., 14(2), 386.
https://doi.org/10.13057/ijap.v14i2.93092. - Cao, V. C., Vo, A. T., Le, Q. T., Le, N. T., Duong, T. H., & Tran, H. N. (2021). Depth-dose profiles in continuous and discontinuous materials of food products and medical devices irradiated by 10 MeV electron beam. J. Radioanal. Nucl. Chem., 330(3), 609–617.
https://doi.org/10.1007/s10967-021-07985-5. - Kroc, T. K. (2023). Monte Carlo simulations demonstrating physics of equivalency of gamma, electronbeam, and X-ray for radiation sterilization. Radiat. Phys. Chem., 204, 110702.
https://doi.org/10.1016/j.radphyschem.2022.110702. - Jung, S. T., Pyo, S. H., Kang, W. G., Kim, Y. R., Kim, J. K., Kang, C. M., Nho, Y. C., & Park, J. S. (2021). Energy deposition calculation by Monte Carlo simulation in irradiation of electric cables by electron beam. Radiat. Phys. Chem., 186, 109506.
https://doi.org/10.1016/j.radphyschem.2021.109506. - Kim, J., Moreira, R. G., & Castell-Perez, M. E. (2010). Simulation of pathogen inactivation in whole and fresh-cut cantaloupe (Cucumis melo) using electron beam treatment. J. Food Eng., 97(3), 425–433.
https://doi.org/10.1016/j.jfoodeng.2009.10.038. - Kim, J., Rivadeneira, R. G., Castell-Perez, M. E., & Moreira, R. G. (2006). Development and validation of a methodology for dose calculation in electron beam irradiation of complex-shaped foods. J. Food Eng., 74(3), 359–369.
- Hallman, G. J., & Loaharanu, P. (2016). Phytosanitary irradiation – Development and application. Radiat. Phys. Chem., 129, 39–45.
https://doi.org/10.1016/j.radphyschem.2016.08.003. - Majer, M., Roguljić, M., Knežević, Ž., Starodumov, A., Ferenček, D., Brigljević, V., & Mihaljević, B. (2019). Dose mapping of the panoramic 60Co gamma irradiation facility at the Ruđer Bošković Institute – Geant4 simulation and measurements. Appl. Radiat. Isot., 154, 108824.
https://doi.org/10.1016/j.apradiso.2019.108824. - Kim, J., Moreira, R. G., & Castell-Perez, E. (2011). Optimizing irradiation treatment of shell eggs using simulation. J. Food Sci., 76(1), 173–177.
- Kim, J., Kwon, S. -H., Chung, S. -W., Kwon, S. -G., Park, J. -M., & Choi, W. -S. (2013). Understanding phytosanitary irradiation treatment of pineapple using Monte Carlo simulation. J. Biosyst. Eng., 38(2), 87–94.
- Kim, J., Moreira, R. G., & Castell-Perez, M. E. (2015). Improving phytosanitary irradiation treatment of mangoes using Monte Carlo simulation. J. Food Eng., 149, 137–143.
https://doi.org/10.1016/jjfoodeng.2014.10.005. - Kim, J., Moreira, R. G., & Castell-Perez, M. E. (2019). Determination of best pine wilt disease treatment using irradiation. J. Radiat. Res. Appl. Sci., 12(1), 269–280.
https://doi.org/10.1080/16878507.2019.1650994. - Kim, J., Moreira, R. G., Rivadeneira, R., & Castell-Perez, M. E. (2005). Monte Carlo-based food irradiation simulator. J. Food Process Eng., 29(1), 72–88.
- Kim, J., Moreira, R. G., Huang, Y., & Castell-Perez, M. E. (2007). 3-D dose distributions for optimum radiation treatment planning of complex foods. J. Food Eng., 79(1), 312–321.
- Kim, J. (2014). Monte Carlo simulation of phytosanitary irradiation treatment for mangosteen using MRI-based geometry. J. Biosyst. Eng., 39(3), 205–214.
https://doi.org/10.5307/JBE.2014.39.3.205(2014) . - Peivaste, I., & Alahyarizadeh, G. (2019). Comparative study on absorbed dose distribution of potato and onion in X-ray and electron beam system by MCNPX2.6 code. Mapan, 34(1), 19–29.
https://doi.org/10.1007/s12647-018-0287-z. - Kataoka, N., Kawahara, D., & Sekiguchi, M. (2023). Uniform irradiation of table eggs in the shell with low-energy electron beams. Radiat. Phys. Chem., 202, 110553.
https://doi.org/10.1016/j.radphyschem.2022.110553. - Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S. I., Kai, T., Matsuya, Y., Matsuda, N., Hirata, Y., Sekikawa, T., Yao, L., Tsai, P. E., Ratliff, H. N., Iwase, H., Sakaki, Y., Sugihara, K., Shigyo, N., Sihver, L., & Niita, K. (2024). Recent improvements of the particle and heavy ion transport code system – PHITS version 3.33. J. Nucl. Sci. Technol., 61(1), 127–135.
https://doi.org/10.1080/00223131.2023.2275736. - Mannai, K., Askri, B., Loussaief, A., & Trabelsi, A. (2007). Evaluation using Geant4 of the transit dose in the Tunisian gamma irradiator for insect sterilization. Appl. Radiat. Isot., 65(6), 701–707.
- El-Ouardi, Y., Aknouch, A., Dadouch, A., Mouhib, M., Maghnouj, A., Benmessaoud, M., & Yjjou, M. (2023). Control of transit doses by Monte Carlo simulation inside an ionization casemate housing of a 60Co gamma irradiator. Radiat. Phys. Chem., 206, 110776.
https://doi.org/10.1016/j.radphyschem.2023.110776. - Shiha, M., Cygler, J. E., MacRae, R., & Heath, E. (2023). 4D Monte Carlo dose reconstructions using surface motion measurements. Phys. Med., 114, 103135.
https://doi.org/10.1016/j.ejmp.2023.103135. - Moon, S., Han, H., Choi, C., Shin, B., Son, G., Kim, H., Kim, S., Kim, J., Yoon, I. G., Lee, K. H., & Kim, C. H. (2024). Towards accurate dose assessment for emergency industrial radiography source retrieval operations: A preliminary study of 4D Monte Carlo dose calculations. Nucl. Eng. Technol., 56(12), 5428–5436.
https://doi.org/10.1016/j.net.2024.09.004. - Gholampourkashi, S., Cygler, J. E., Lavigne, B., & Heath, E. (2020). Validation of 4D Monte Carlo dose calculations using a programmable deformable lung phantom. Phys. Med., 76, 16–27.
https://doi.org/10.1016/j.ejmp.2020.05.019. - Loussaief, A., Trabelsi, A., & Baccari, B. (2006). Extended gamma sources modelling using multipole expansion: Application to the Tunisian gamma source load planning. Radiat. Phys. Chem., 75(4), 463–472.
- Loussaief, A., & Trabelsi, A. (2007). Dose mapping using multipole moments. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 580(1), 102–105.
- Rezaeian, P., Ataenia, V., & Shafiei, S. (2017). An analytical method based on multipole moment expansion to calculate the flux distribution in Gammacell-220. Radiat. Phys. Chem., 141, 339–345.
https://doi.org/10.1016/j.radphyschem.2017.08.003. - Belkadhi, K., & Manai, K. (2016). Dose calculation using a numerical method based on Haar wavelets integration. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 812, 73–80.
https://doi.org/10.1016/j.nima.2015.12.057. - Singh, M., & Datta, D. (2020). Development of an algorithm for gamma dose mapping in irradiated product using TOPSIS and its validation. Radiat. Phys. Chem., 177, 109123.
https://doi.org/10.1016/j.radphyschem.2020.109123. - Studenikin, F. R., Bliznyuk, U. A., Chernyaev, A. P., Khankin, V. V., & Krusanov, G. A. (2021). Impact of aluminum plates on uniformity of depth dose distribution in object during electron processing. Mosc. Univ. Phys. Bull., 76(1), S1–S7.
https://doi.org/10.3103/S0027134922010106. - Studenikin, F. R., Bliznyuk, U. A., Chernyaev, A. P., Krusanov, G. A., Nikitchenko, A. D., Zolotov, S. A., & Ipatova, V. S. (2023). Electron beam modification for improving dose uniformity in irradiated objects. Eur. Phys. J. Spec. Top., 232(10), 1631–1635.
https://doi.org/10.1140/epjs/s11734-023-00886-6. - Bliznyuk, U. A., Borshchegovskaya, P. Y., Zolotov, S. A., Ipatova, V. S., Krusanov, G. A., Nikitchenko, A. D., Studenikin, F. R., & Chernyaev, A. P. (2022). Determining the electron beam spectrum after passing through aluminum plates. Mosc. Univ. Phys. Bull., 77(4), 615–621.
https://doi.org/10.3103/S0027134922040038. - Bliznyuk, U. A., Avdyukhina, V. M., Borshchegovskaya, P. Y., Ipatova, V. S., Nikitchenko, A. D., Studenikin, F. R., & Chernyaev, A. P. (2021). Estimating the accuracy of reconstructing bichromatic spectra of electron beams from depth dose distributions. Bull. Russ. Acad. Sci. Phys., 85(10), 1108–1112.
https://doi.org/10.3103/S1062873821100099. - Bliznyuk, U. A., Borshchegovskaya, P. Y., Ipatova, V. S., Nikitchenko, A. D., Studenikin, F. R., & Chernyaev, P. (2022). Determining the beam spectrum of industrial electron accelerator using depth dose distribution. Bull. Russ. Acad. Sci. Phys., 86(4), 500–507.
https://doi.org/10.3103/S1062873822040062. - Sohrabpour, M., Hassanzadeh, M., Shahriari, M., & Sharifzadeh, M. (2002). Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry. Appl. Radiat. Isot., 57(4), 537–542.
https://doi.org/10.1016/S0969-8043(02)00130-6 . - Sohrabpour, M., Hassanzadeh, M., Shahriari, M., & Sharifzadeh, M. (2002). Dose distribution of the IR-136 irradiator using a Monte Carlo code and comparison with dosimetry. Radiat. Phys. Chem., 63, 769–772.
- Raisali, G. R., & Sohrabpour, M. (1993). Application of EGS4 computer code for determination of gamma ray spectrum and dose rate distribution in Gammacell 220. Radiat. Phys. Chem., 42, 799–805.
- Weiss, D. E., & Stangeland, R. J. (2003). Dose prediction and process optimization in a gamma sterilization facility using 3-D Monte Carlo code. Radiat. Phys. Chem., 68(6), 947–958.
- Oliveira, C., Salgado, J., Botelho, M. L., & Ferreira, L. M. (2000). Dose determination by Monte Carlo – A useful tool in gamma radiation process. Radiat. Phys. Chem., 57(3/6), 667–670.
- Oliveira, C., Salgado, J., & Ferro De Carvalho, A. (2000). Dose rate determinations in the Portuguese gamma irradiation facility: Monte Carlo simulations and measurements. Radiat. Phys. Chem., 58(3), 279–285.
- Belchior, A., Botelho, M. L., & Vaz, P. (2007). Monte Carlo simulations and dosimetric studies of an irradiation facility. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 580(1), 70–72.
https://doi.org/10.1016/j.nima.2007.05.040. - Portugal, L., Cardoso, J., & Oliveira, C. (2010). Monte Carlo validation of the irradiator parameters of the Portuguese gamma irradiation facility after its replenishment. Appl. Radiat. Isot., 68(1), 190–195.
- Gharbi, F., Kadri, O., Farah, K., & Mannai, K. (2005). Validation of GEANT code of CERN as predictive tool of dose rate measurement in the Tunisian gamma irradiation facility. Radiat. Phys. Chem., 74(2), 102–110.
- Kadri, O., Gharbi, F., & Farah, K. (2005). Monte Carlo improvement of dose uniformity in gamma irradiation processing using the GEANT4 code. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 239(4), 391–398.
- Ounalli, L., Bhar, M., Mejri, A., Manai, K., Bouabidi, A., Abdallah, S. M., & Reguigui, N. (2017). Combining Monte Carlo simulations and dosimetry measurements for process control in the Tunisian Cobalt-60 irradiator after three half lives of the source. Nucl. Sci. Tech., 28(9), 1–10.
https://doi.org/10.1007/s41365-017-0289-5. - Kim, Y. H., & Park, J. W. (2008). Dose rate simulation of a panoramic gamma irradiator using the MCNPX code and comparison with measurements. J. Nucl. Sci. Technol., 45, 325–328.
https://doi.org/10.1080/00223131.2008.10875854. - Kang, C. M., Jung, S. T., Pyo, S. H., Seo, Y., Kang, W. G., Kim, J. K., Nho, Y. C., Park, J. S., & Choi, J. H. (2023). Characterization of the 2.5 MeV ELV electron accelerator electron source angular distribution using 3-D dose measurement and Monte Carlo simulations. Nucl. Eng. Technol., 55(12), 4678–4684.
https://doi.org/10.1016/j.net.2023.09.004. - Khattab, K., Boush, M., & Alkassiri, H. (2013). Dose mapping simulation using the MCNP code for the Syrian gamma irradiation facility and benchmarking. Ann. Nucl. Energy, 58, 110–112.
https://doi.org/10.1016/j.anucene.2012.11.009. - Mortuza, M. F., Lepore, L., Khedkar, K., Thangam, S., Nahar, A., Jamil, H. M., Bandi, L., & Alam, Md K. (2018). Comissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data. Radiat. Phys. Chem., 144, 256–264.
https://doi.org/10.1016/j.radphyschem.2017.08.022. - Gual, M. R., Milian, F. M., Mesquita, A. Z., & Pereira, C. (2017). New source models to represent the irradiation process in panoramic gamma irradiator. Appl. Radiat. Isot., 128, 175–182.
https://doi.org/10.1016/j.apradiso.2017.06.046. - Gual, M. R., Mesquita, A. Z., Ribeiro, E., & Grossi, P. A. (2017). Shielding verifications for a gamma irradiation facility considering the installation of a new automatic product loading system. Sci. Technol. Nucl. Install., 2017, 1–6.
https://doi.org/10.1155/2017/7408645. - Gual, M. R., Pereira, C., & Mesquita, A. Z. (2019). Application of a new source model of a panoramic gamma irradiator on dose map formation in an irradiated product. Appl. Radiat. Isot., 144, 87–92.
https://doi.org/10.1016/j.apradiso.2018.12.002. - Aknouch, A., Elouardi, Y., Mouhib, M., Sebihi, R., Didi, A., & Choukri, A. (2020). New approach to make cylindrical packaging products in rotation around their fixed axis during irradiation in the Monte Carlo simulation. Mosc. Univ. Phys. Bull., 75(5), 447–450.
https://doi.org/10.3103/S0027134920050045. - Aknouch, A., Mouhib, M., Sebihi, R., Didi, A., El-Ouardi, Y., Boubekraoui, A., & Choukri, A. (2020). Monte Carlo simulation of the dose rate distribution of a Moroccan panoramic gamma irradiator using the MCNPX code. Mosc. Univ. Phys. Bull., 75(1), 35–38.
https://doi.org/10.3103/S0027134920010026. - Kataoka, N., Kawahara, D., & Sekiguchi, M. (2021). Surface treatment of eggshells with low-energy electron beam. J. Radiat. Prot. Res., 46(1), 8–13.
https://doi.org/10.14407/JRPR.2020.