Have a personal or library account? Click to login
Deuterium isotope effects in mechanistic studies of biotransformations of l-tyrosine and p-hydroxyphenylpyruvic acid catalyzed by the enzyme l-phenylalanine dehydrogenase Cover

Deuterium isotope effects in mechanistic studies of biotransformations of l-tyrosine and p-hydroxyphenylpyruvic acid catalyzed by the enzyme l-phenylalanine dehydrogenase

Open Access
|May 2025

References

  1. Scriver, C. R. (2007). The PAH gene, phenylketonuria, and a paradigm shift. Hum. Mutat., 28(9), 831–845.
  2. Williams, R. A., Mamotte, C. D. S., & Burnett, J. R. (2008). Phenylketonuria: An inborn error of phenylalanine metabolism. Clin. Biochem. Rev., 29(1), 31–41.
  3. Hendriksz, C. J., & Walter, J. H. (2004). Update on phenylketonuria. Curr. Pediatr., 14(5), 400–406.
  4. Mitchell, G. A., Grompe, M., Lambert, M., & Tanguay, R. M. (2001) Hypertyrosinemia. In C. R. Scriver, A. L. Beaudet & W. S. Sly (Eds.), The metabolic and molecular bases of inherited disease. (8th ed., Vol. II, pp. 1777–1785). New York: McGraw-Hill.
  5. Brunhuber, N. M. W., Banerjee, A., Jacobs, W. R. Jr, & Blanchard, J. S. (1994). Cloning, sequencing, and expressing of Rhodococcus l-phenylalanine dehydrogenase. J. Biol. Chem., 269(23), 16203–16211.
  6. Brunhuber, N. M. W., Thoden, J. B., Blanchard, J. S., & Vanhooke, J. L. (2000). Rhodococcus l-phenylalanine dehydrogenase: kinetics, mechanism, and structural basis for catalytic specifity. Biochemistry, 39(31), 9174–9187.
  7. Seah, S. Y. K., Britton, K. L., Rice, D. W., Asano, Y., & Engel, P. C. (2002). Single amino acid substitution in Bacillus sphaericus phenylalanine dehydrogenase dramatically increases its discrimination between phenylalanine and tyrosine substrates. Biochemistry, 41, 11390–11397.
  8. Seah, S. Y. K., Britton, K. L., Rice, D. W., Asano, Y., & Engel, P. C. (2003). Kinetic analysis of phenylalanine dehydrogenase mutants designed for aliphatic amino acid dehydrogenase with guidance from homologybased modelling. Eur. J. Biochem., 270, 4628–4634.
  9. Asano, Y., Yamada, A., Kato, Y., Yamaguchi, K., Hibino, Y., Hirai, K., & Kondo, K. (1990). Enantioselective synthesis of (S)-amino acids by phenylalanine dehydrogenase from Bacillus sphaericus: use of natural and recombinant enzymes. J. Org. Chem., 55(21), 5567–5571.
  10. Busca, P., Paradisi, F., Moynihan, E., Maguire, A. R., & Engel, P. C. (2004). Enantioselective synthesis of non-natural amino acids using phenylalanine dehydrogenase modified by site-directed mutagenesis. Org. Biomol. Chem., 2, 2684–2691.
  11. Hummel, W. E., Schmidt, E., Wandrey, C., & Kula, M.-R. (1986). l-Phenylalanine dehydrogenase from Brevibacterium sp. for production l-phenylalanine by reductive amination of phenylpyruvate. Appl. Microbiol. Biotechnol., 25(3), 175–185.
  12. Sühnel, J. R. L., & Schowen, L. R. (1991). Theoretical basis for primary and secondary hydrogen isotope effects. In P. F. Cook (Ed.), Enzyme mechanism from isotope effects (pp. 3–35). Boca Raton (FL): CRC Press.
  13. Schowen, L. R. (1972). Mechanistic deductions from solvent isotope effect. Prog. Phys. Org. Chem., 9, 275–332.
  14. Jemielity, J., Kański, R., & Kańska, M. (2001). Synthesis of tritium labeled [3R-3H]-, and [3S-3H]-l-phenylalanine. J. Label. Compd. Radiopharm., 44, 205–304.
  15. Skowera, K., & Kańska, M. (2008). Enzymatic synthesis of phenylpyruvic acid labeled with deuterium, tritium, and carbon-14. J. Label. Compd., 51, 321–324.
  16. Pałka, K., & Kańska, M. (2012). Enzymatic reductive amination of p-hydroxy- and phenylpyruvic acids as methods of synthesis of l-tyrosine and l-phenylalanine labeled with deuterium and tritium. Nukleonika, 57(3), 383–387.
  17. Gary, R., Bates, R. G., & Robinson, R. A. (1964). Second dissociation constant of deuteriophosphoric acid in deuterium oxide from 5 to 50°C: Standardization of pD scale. J. Phys. Chem., 68(12), 3806–3809.
  18. Kańska, M., Dragulska, S., Pająk, M., & Winnicka, E. (2015). Isotope effects in the hydroxylation of ltyrosine catalyzed by tyrosinase. J. Radioanal. Nucl. Chem., 305(2), 371–378.
  19. Parkin, D. W. (1991). Methods for determination of competitive and noncompetitive kinetics isotope effects. In P. F. Cook (Ed.), Enzyme mechanism from isotope effects (pp. 269–290), Boca Raton (FL): CRC Press.
  20. Papajak, E., Kwiecień, R. A., Rudziński, J., Sicińska, D., Kamiński, R., Szadkowski, Ł., Kurihara, T., Esaki, N., & Paneth, P. (2006). Mechanism of reaction catalyzed by DL-2-haloacid dehalogenase from kinetic isotope effects. Biochemistry, 45(19), 6012–6017.
  21. Brunhuber, N. M. W., & Blanchard, J. S. (1994). The biochemistry and enzymology of amino acid dehydrogenases. Crit. Rev. Biochem. Mol. Biol., 29(6), 415–467.
  22. Wende, U., Koppelkam, M., Hummel, W., Sander, J., & Langenbeck, U. (1990). A new approach to the newborn screening for hyperphenylalaninemias: use of l-phenylalanine dehydrogenase and micrititer plates. Clin. Chim. Acta, 192(3), 165–170.
  23. Naghib, S. M., Rabee, M., Omidinia, E., & Khoshkenar, P. (2012). Investigation of a biosensor based on phenylalanine dehydrogenase immobilized on the polymer-blend film for phenylketonuria. Electroanalysis, 24, 407–417.
  24. Asano, Y., & Nakazawa, A. (1987). High yield synthesis of l-amino acids by phenylalanine dehydrogenase from Sporasacrina ureae. Agric. Biol. Chem., 51(7), 2035–2036.
  25. Vanhooke, J. L., Thoden, J. B., Brunhuber, N. M. W., Blanchard, J. S., & Holden, H. M. (1999). Phenylalanine dehydrogenase from Rhodococcus sp. M4: High-resolution X-ray analyses of inhibitory ternary complexes reveal key features in the oxidative deamination mechanism. Biochemistry, 38(8), 2326–2339.
DOI: https://doi.org/10.2478/nuka-2025-0006 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 51 - 56
Submitted on: Jan 5, 2024
|
Accepted on: Mar 4, 2025
|
Published on: May 2, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Katarzyna Pałka, Katarzyna Podsadni, Jolanta Szymańska-Majchrzak, Elżbieta Winnicka, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.