Have a personal or library account? Click to login
Liquid dosimeter with sensitivity in low-kGy range for the characterization of a new module for EB wastewater treatment Cover

Liquid dosimeter with sensitivity in low-kGy range for the characterization of a new module for EB wastewater treatment

Open Access
|Jun 2024

References

  1. Szabó, L., Szabó, J., Illés, E., Kovács, A., Belák, A., Mohácsi-Farkas, C., Takács, E., & Wojnárovits, L. (2017). Electron-beam treatment for tackling the escalating problems of antibiotic resistance: Eliminat-ing the antimicrobial activity of wastewater matrices originating from erythromycin. Chem. Eng. J., 321, 314–324. DOI: 10.1016/j.cej.2017.03.114.
  2. Capodaglio, A. (2019). Contaminants of emerging concern removal by high-energy oxidation-reduction processes: State of the art. Appl. Sci., 9(21), 4562. DOI: 10.3390/app9214562.
  3. Coleman, H. M., Abdullah, M. I., Eggins, B. R., & Palmer, F. L. (2005). Photocatalytic degradation of 17p-oestradiol, oestriol and 17α-ethynyloestradiol in water monitored using fluorescence spectros-copy. Appl. Catal. B-Environ., 55(1), 23–30. DOI: 10.1016/j.apcatb.2004.07.004.
  4. Bluhm, H., Han, B., Chmielewski, A. G., von Do-beneck, D., Gohs, U., Gstöttner, J., Mattausch, G., Morgner, H., Koops, H. W. P., Reichmann, A., Röder, O., Schultz, S. W., Wenzel, B., & Zywitzki, O. (2008). Electron-beam devices for materials processing and analysis. In J. A. Eichmeier & M. Thumm (Eds.), Vacuum electronics – components and devices (pp. 155-224). Berlin, Heidelberg, New York: Springer Science & Business Media.
  5. Schopf, S., Gotzmann, G., Dietze, M., Gerschke, S., Kenner, L., & König, U. (2022). Investigations into the suitability of bacterial suspensions as biological indicators for low-energy electron irradiation. Front. Immunol., 13, 814767. DOI: 10.3389/fimmu.2022.814767.
  6. Fertey, J., Bayer, L., Grunwald, T., Pohl, A., Beck-mann, J., Gotzmann, G., Portillo Casado, J., Schönfelder, J., Rögner, F.-H., Wetzel, C., Thoma, M., Bailer, S. M., Hiller, E., Rupp, S., & Ulbert, S. (2016). Pathogens inactivated by low-energy-electron irradiation maintain antigenic properties and induce protective immune responses. Viruses, 8(11), 319. DOI: 10.3390/v8110319.
  7. Jacobs, G. P. (1998). A review on the effects of ion-izing radiation on blood and blood components. Radiat. Phys. Chem., 53(5), 511–523. DOI: 10.1016/S0969-806X(98)00185-6.
  8. McLaughlin, W. L., Miller, A., Kovács, A., & Mehta, K. K. (2011). Dosimetry methods. In A. Vértes, S. Nagy, Z. Klencsár, R. G. Lovas & F. Rösch (Eds.), Handbook of nuclear chemistry (2nd ed.) (Vol. 5, pp. 2287–2318). Boston: Springer Science & Business Media.
  9. Handayani, I. N., & Imawan, C. (2018). Liquid ra-diochromic from Roselle dye extract for gamma-ray dosimetry applications at medium dose levels. In The 3rd International Seminar on Sensors, Instrumentation, Measurement and Metrology, 4–5 December 2018 (pp. 64–67). Depok, Indonesia: IEEE.
  10. Shahid, M., Islam, S. ul, & Mohammad, F. (2013). Recent advancements in natural dye applications: a review. J. Clean Prod., 53, 310–331. DOI: 10.1016/j. jclepro.2013.03.031.
  11. Ramamoorthy, R., Radha, N., Maheswari, G., Anan-dan, S., Manoharan, S., & Williams, R. V. (2016). Betalain and anthocyanin dye-sensitized solar cells. J. Appl. Electrochem., 46(9), 929–941. DOI: 10.1007/s10800-016-0974-9.
  12. Suhaimi, S., Nasri, N. M., Wahab, S., Ismail, N. S., Shahimin, M. M., & Sauli, Z. (2020). Ultraviolet-visible absorbance analysis on solvent dependent effect of tropical plant anthocyanin extraction for dye-sensitized solar cells. AIP Conf. Proc., 2203(1), 020054. DOI: 10.1063/1.5142146.
  13. Akram, N. G., Bhutto, W. A., & Sharif, I. N. (2016). A study on the response of natural dye to gamma radiation as a dosimeter. Afr. J. Chem., 3(3), 182–187.
  14. Dangles, O., & Fenger, J. -A. (2018). The chemical reactivity of anthocyanins and its consequences in food science and nutrition. Molecules, 23(8), 1970. DOI: 10.3390/molecules23081970.
  15. Março, P. H., Poppi, R. J., Scarminio, I. S., & Tauler, R. (2011). Investigation of the pH effect and UV radiation on kinetic degradation of anthocyanin mixtures extracted from Hibiscus acetosella. Food Chem., 125(3), 1020–1027. DOI: 10.1016/j.food-chem.2010.10.005.
  16. Indah, N. H., Listyarini, A., & Imawan, C. (2020). Natural red dyes from Hibiscus sabdariffa L. calyxes extract for gamma-rays detector. J. Phys.-Conf. Ser., 1428(1), 012061. DOI: 10.1088/1742-6596/1428/1/012061.
DOI: https://doi.org/10.2478/nuka-2024-0010 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 75 - 80
Submitted on: Nov 15, 2023
Accepted on: Apr 3, 2024
Published on: Jun 25, 2024
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Lotte Ligaya Schaap, Tobias Teichmann, Andre Poremba, Joana Kira Besecke, Simone Schopf, Gösta Mattausch, Elizabeth von Hauff, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.