Have a personal or library account? Click to login
Degradation of hydroxychloroquine in aqueous solutions under electron beam treatment Cover

Degradation of hydroxychloroquine in aqueous solutions under electron beam treatment

Open Access
|Jun 2024

References

  1. Tarazona, J. v., Martínez, M., Martínez, M. A., & Anadon, A. (2021). Environmental impact assess-ment of COVID-19 therapeutic solutions. A prospective analysis. Sci. Total Environ., 778. https://doi.org/10.1016/j.scitotenv.2021.146257.
  2. Kumar, V., Garg, S., & Sharma, P. (2018). Chemical kinetics and stability studies of Amlodipine Besyl-ate. Asian Journal of Pharmaceutical Research and Development, 6(2), 87–92.
  3. Kumar, S., Pratap, B., Dubey, D., Kumar, A., Shukla, S., & Dutta, V. (2022). Constructed wetlands for the removal of pharmaceuticals and personal care prod-ucts (PPCPs) from wastewater: origin, impacts, treat-ment methods, and SWOT analysis. Environ. Monit. Assess., 194(12), 1–16. https://doi.org/10.1007/ S10661-022-10540-8.
  4. Efrain Merma Chacca, D., Maldonado, I., & Vilca, F. Z. (2022). Environmental and ecotoxicological effects of drugs used for the treatment of COVID 19. Front. Environ. Sci., 10, 1287. https://doi.org/10.3389/FENVS.2022.940975.
  5. Monsef, R., & Salavati-Niasari, M. (2022). Electro-chemical sensor based on a chitosan-molybdenum vanadate nanocomposite for detection of hydroxychlo-roquine in biological samples. J. Colloid Interface Sci., 613, 1–14. https://doi.org/10.1016/J.JCIS.2022.01.039.
  6. Pushpanjali, P. A., Manjunatha, J. G., Hareesha, N., Girish, T., Al-Kahtani, A. A., Tighezza, A. M., & Ataollahi, N. (2022). Electrocatalytic determination of hydroxychloroquine using sodium dodecyl sulphate modified carbon nanotube paste electrode. Top. Catal., 1, 1–9. https://doi.org/10.1007/S11244-022-01568-8.
  7. Dabic, D., Babic, S., & Skoric, I. (2019). The role of photodegradation in the environmental fate of hydroxychloroquine. Chemosphere, 230. https://doi. org/10.1016/j.chemosphere.2019.05.032.
  8. Babić, S., Dabić, D., & Ćurković, L. (2017). Fate of hydroxychloroquine in the aquatic environment. In CEST2017-15th International Conference on En-vironmental Science and Technology, 31 August-2 September 2017, Rhodes, Greece, pp. 1–5.
  9. Sayed, A. E. D. H., Hamed, M., & Soliman, H. A. M. (2021). Spirulina platensis alleviated the hemo-toxicity, oxidative damage and histopathological alterations of hydroxychloroquine in Catfish (Clarias gariepinus). Front. Physiol., 12, 881. https://doi. org/10.3389/FPHYS.2021.683669/BIBTEX.
  10. da Luz, T. M., Araújo, A. P. da C., Estrela, F. N., Braz, H. L. B., Jorge, R. J. B., Charlie-Silva, I., & Malafaia, G. (2021). Can use of hydroxychloroquine and azithromycin as a treatment of COVID-19 affect aquatic wildlife? A study conducted with neotropical tadpole. Sci. Total Environ., 780, 146553. https://doi. org/10.1016/J.SCITOTENV.2021.146553.
  11. Tonnesen, H. H., Grislingaas, A. L., Woo, S. O., & Karlsen, J. (1988). Photochemical stability of antima-larial. I. Hydroxychloroquine. Int. J. Pharm., 43(3). https://doi.org/10.1016/0378-5173(88)90276-1.
  12. Kargar, F., Bemani, A., Sayadi, M. H., & Ahmad-pour, N. (2021). Synthesis of modified beta bismuth oxide by titanium oxide and highly efficient solar photocatalytic properties on hydroxychloroquine degradation and pathways. J. Photochem. Photobiol. A-Chemistry, 419, 113453. https://doi.org/10.1016/J. JPHOTOCHEM.2021.113453.
  13. Dastborhan, M., Khataee, A., Arefi-Oskoui, S., & Yoon, Y. (2022). Synthesis of flower-like MoS2/CNTs nanocomposite as an efficient catalyst for the sonocat-alytic degradation of hydroxychloroquine. Ultrason. Sonochem., 87, 106058. https://doi.org/10.1016/J.ULTSONCH.2022.106058
  14. Bensalah, N., Midassi, S., Ahmad, M. I., & Bedoui, A. (2020). Degradation of hydroxychloroquine by electrochemical advanced oxidation processes. Chem. Eng. J., 402, 126279. https://doi.org/10.1016/j.cej.2020.126279.
  15. de Araújo, D. M., dos Santos, E. v., Martínez-Huitle, C. A., & de Battisti, A. (2022). Achieving electro-chemical-sustainable-based solutions for monitoring and treating hydroxychloroquine in real water matrix. Appl. Sci., 12(2), 699. https://doi.org/10.3390/ APP12020699.
  16. Ansarian, Z., Khataee, A., Arefi-Oskoui, S., Orooji, Y., & Lin, H. (2022). Ultrasound-assisted catalytic activation of peroxydisulfate on Ti3GeC2 MAX phase for efficient removal of hazardous pollutants. Mater. Today Chem., 24, 100818. https://doi.org/10.1016/J. MTCHEM.2022.100818.
  17. da Silva, P. L., Nippes, R. P., Macruz, P. D., Hegeto, F. L., & Olsen Scaliante, M. H. N. (2021). Photo-catalytic degradation of hydroxychloroquine using ZnO supported on clinoptilolite zeolite. Water Sci. Technol., 84 (3), 763–776. https://doi.org/10.2166/WST.2021.265.
  18. el Amri, R., Elkacmi, R., Hasib, A., & Boudouch, O. (2022). Removal of hydroxychloroquine from an aqueous solution using living microalgae: Effect of operating parameters on removal efficiency and mechanisms. Water Environ. Res., 9, e10790–n/a.
  19. Gümüş, D., & Gümüş, F. (2022). Removal of hy-droxychloroquine using engineered biochar from algal biodiesel industry waste: Characterization and design of experiment (DoE). Arabian Journal for Science and Engineering, 6, 7325–7334.
  20. Nippes, R. P., Macruz, P. D., Molina, L. C. A., & Scaliante, M. H. N. O. (2022). Hydroxychloroquine adsorption in aqueous medium using clinoptilolite zeolite. Water, Air and Soil Pollution, 233(8), 1–14. https://doi.org/10.1007/S11270-022-05787-3.
  21. Bendjeffal, H., Ziati, M., Aloui, A., Mamine, H., Meti-dji, T., Djebli, A., & Bouhedja, Y. (2021). Adsorption and removal of hydroxychloroquine from aqueous media using Algerian kaolin: Full factorial optimisation, kinetic, thermodynamic, and equilibrium studies. Int. J. Environ. Anal. Chem., 103(9), 1982–2003. https:// doi.org/10.1080/03067319.2021.1887162.
  22. Zaouak, A., Jebali, S., Chouchane, H., & Jelassi, H. (2022). Impact of gamma-irradiation on the degra-dation and mineralization of hydroxychloroquine aqueous solutions. Int. J. Environ. Sci. Technol., 20, 6815–6824. https://doi.org/10.1007/S13762-022-04360-z.
  23. Boujelbane, F., Nasr, K., Sadaoui, H., Bui, H. M., Gantri, F., & Mzoughi, N. (2022). Decomposition mechanism of hydroxychloroquine in aqueous solution by gamma irradiation. Chem. Pap., 76(3), 1777–1787. https://link.springer.com/article/10.1007/s11696-021-01969-1.
  24. Han, B., Ko, J., Kim, J., Kim, Y., Chung, W., Maka-rov, I. E., Ponomarev, A. V., & Pikaev, A. K. (2002). Combined electron-beam and biological treatment of dyeing complex wastewater. Pilot plant experiments. Radiat. Phys. Chem., 64(1), 53–59. https://doi. org/10.1016/S0969-806X(01)00452-2.
  25. Sharpe, P. H. G., & Sehested, K. (1989). The di-chromate dosimeter: A pulse-radiolysis study. Int. J. Radiat. Appl. Instrum. Pt. C-Radiat. Phys. Chem., 34(5), 763–768. https://doi.org/10.1016/1359-0197(89)90281-6.
  26. McLaughlin, W. L., Al-Sheikhly, M., Farahani, M., & Hussmann, M. H. (1990). A sensitive dichromate dosimeter for the dose range, 0.2–3 kGy. Int. J. Radiat. Appl. Instrum. Pt. C-Radiat. Phys. Chem., 35(4/6), 716–723. https://doi.org/10.1016/1359-0197(90)90303-Y.
  27. Šećerov, B., & Bačić, G. (2008). Comparison of dichro-mate and ethanol-chlorobenzene dosimeters in high dose radiation processing. Nukleonika, 53(3), 85–87.
  28. Wojnárovits, L., & Takács, E. (2017). Wastewater treatment with ionizing radiation. J. Radioanal. Nucl. Chem., 311(2), 973–981. https://doi.org/10.1007/ s10967-016-4869-3
  29. Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (oOH/^O in aqueous solution. J. Phys. Chem. Ref. Data, 17(2), 513–886. https:// doi.org/10.1063/1.555805.
  30. Rath, M. C., Keny, S. J., Upadhyaya, H. P., & Adhikari, S. (2023). Free radical induced degradation and com-putational studies of hydroxychloroquine in aqueous solution. Radiat. Phys. Chem., 206, 110785. https:// doi.org/10.1016/j.radphyschem.2023.110785.
  31. Bors, W., Golenser, J., Chevion, M., & Saran, M. (1991). Reductive and oxidative radical reactions of selected antimalarial drugs. Oxidative Damage & Repair, 1991, 234–240. https://doi.org/10.1016/ B978-0-08-041749-3.50046-2.
  32. Kovács, K., Simon, Á., Balogh, G. T., Tóth, T., & Wojnàrovits, L. (2020). High-energy ionizing radi-ation-induced degradation of amodiaquine in dilute aqueous solution: radical reactions and kinetics. Free Radic. Res., 54(2/3), 185–194. https://doi.org/10.10 80/10715762.2020.1736579.
  33. Rath, M. C., Keny, S. J., Upadhyaya, H. P., & Adhikari, S. (2023). Free radical induced degradation and com-putational studies of hydroxychloroquine in aqueous solution. Radiat. Phys. Chem., 206, 110785. https:// doi.org/10.1016/j.radphyschem.2023.110785.
  34. Zaouak, A., Noomen, A., & Jelassi, H. (2021). Deg-radation mechanism of losartan in aqueous solutions under the effect of gamma radiation. Radiat. Phys. Chem., 184, 109435. https://doi.org/10.1016/j.rad-physchem.2021.109435.
  35. Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016). A review on Fenton-like processes for organic wastewa-ter treatment. J. Environ. Chem. Eng., 4(1), 762–787. https://doi.org/10.1016/J.JECE.2015.12.016.
  36. Chu, L., & Wang, J. (2022). Treatment of oil-field produced wastewater by electron beam technology: Demulsification, disinfection and oil removal. J. Clean Prod., 378, 134532. https://doi.org/10.1016/J. JCLEPRO.2022.134532.
  37. Wang, J., & Chu, L. (2016). Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: An overview. Radiat. Phys. Chem., 125, 56–64. https://doi.org/10.1016/j.radphy-schem.2016.03.012.
  38. Warhurst, D. C., Steele, J. C. P., Adagu, I. S., Craig, J. C., & Cullander, C. (2003). Hydroxychloro-quine is much less active than chloroquine against chloroquine-resistant Plasmodium falciparum, in agreement with its physicochemical properties. J. Antimicrob. Chemother., 52(2), 188–193. https://doi.org/10.1093/JAC/DKG319.
  39. Klouda, C. B., & Stone, W. L. (2020). Oxidative stress, proton fluxes, and chloroquine/hydroxychloroquine treatment for COVID-19. Antioxidants, 9(9), 894. https://doi.org/10.3390/antiox9090894.
  40. Catrinel, I. A., Mlak-Marginean, M., Savin, M., & Daescu, M. (2022). The influence of the aqueous composition over degradation of hydroxychloroquine. UPB Sci. Bull. B, 84(3), 63–76.
  41. Tominaga, F. K., Dos Santos Batista, A. P., Silva Costa Teixeira, A. C., & Borrely, S. I. (2018). Degradation of diclofenac by electron beam irradiaton: Toxicitiy removal, by-products identification and effect of an-other pharmaceutical compound. J. Environ. Chem. Eng., 6(4), 4605–4611. https://doi.org/10.1016/j. jece.2018.06.065.
DOI: https://doi.org/10.2478/nuka-2024-0009 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 65 - 74
Submitted on: Oct 5, 2023
Accepted on: Feb 16, 2024
Published on: Jun 25, 2024
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Stephen Kabasa, Yongxia Sun, Sylwester Bułka, Andrzej G. Chmielewski, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.