References
- McIntyre, R. A. (2012). Common nano-materials and their use in real world applications.Sci. Prog., 95,1-22. https://doi.org/10.3184/00368501 2X13294715456431.
- Ling, C., An, H., Li, L., Wang, J., Lu, T, Wang, H., Hu, Y., Song, G., Liu, S. (2021). Genotoxicity evaluation of titanium dioxide nanoparticles in vitro: a systematic review of the literature and meta-analysis.Biol. Trace Elem. Res., 199,2057-2076. https://doi.org/10.1007/s12011-020-02311-8.
- Woodruff, R. S., Li, Y, Yan, J., Bishop, M., Jones, M. Y, Watanabe, F., Biris, A. S., Rice, P., Zhou, T, Chen, T. (2012). Genotoxicity evaluation of titanium dioxide nanoparticles using the Ames test and comet assay.J. Appl. Toxicol., 32,934-943. https://doi.org/10.1002/jat.2781.
- Wang, S., Hunter, L. A., Arslan, Z., Wilkerson, M. G., Wickliffe, J. K. (2011). Chronic exposure to nanosized, anatase titanium dioxide is not cyto-or genotoxic to Chinese hamster ovary cells.Environ. Mol. Mutagen., 52,614-622. https://doi.org/10.1002/em.20660.
- Guichard, Y, Schmit, J., Darne, C., Gate, L., Goutet, M., Rousset, D., Rastoix, O., Wrobel, R., Witschger,O., Martin, A., Fierro, V, Binet, S. (2012). Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells.Ann. Occup. Hyg., 56,631-644. https://doi.org/10.1093/annhyg/mes006.
- Kazimirova, A., Baranokova, M., Staruchova, M., Drlickova, M., Volkovova, K., Dusinska, M. (2019). Titanium dioxide nanoparticles tested for genotoxicity with the comet and micronucleus assays in vitro, ex vivo and in vivo.Mutat. Res., 843,57-65. https://doi.org/10.1016/j.mrgentox.2019.05.001.
- Valdiglesias, V, Costa, C., Sharma, V, Kilic, G., Pasaro, E., Teixeira, J. P., Dhawan, A., Laffon, B. (2013). Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells.Food Chem. Toxicol., 57,352-361. https://doi.org/10.1016/j.fct.2013.04.010.
- Lankoff, A., Sandberg, W J., Wegierek-Ciuk, A., Lisowska, H., Refsnes, M., Sartowska, B., Schwarze, P. E., Meczynska-Wielgosz, S., Wojewodzka, M., Kruszewski, M. (2012). The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells.Toxicol. Lett., 208,197-213. https://doi.org/ S0378-4274(11)01606-7 [pii]; DOI: 10.1016/j.tox-let.2011.11.006.
- Wojewodzka, M., Kruszewski, M., Iwanenko, T., Collins, A. R., Szumiel, I. (1998). Application of the comet assay for monitoring DNA damage in workers exposed to chronic low-dose irradiation. I. Strand breakage.Mutat. Res.,416, 21-35.
- Kruszewski, M., Wojewodzka, M., Iwanenko, T., Collins, A. R., Szumiel, I. (1998). Application of the comet assay for monitoring DNA damage in workers exposed to chronic low-dose irradiation. II. Base damage.Mutat. Res., 416,37-57.
- Kruszewski, M., Gradzka, I., Bartlomiejczyk, T, Chwastowska, J., Sommer, S., Grzelak, A., Zuberek, M., Lankoff, A., Dusinska, M., Wojewodzka, M. (2013). Oxidative DNA damage corresponds to the long term survival of human cells treated with silver nanoparticles.Toxicol. Lett., 219,151-159. https://doi.org/S0378-4274(13)00104-5 [pii]; DOI: 10.1016/j.toxlet.2013.03.006.
- Eckl, P. M. (1995). Aquatic genotoxicity testing with rat hepatocytes in primary culture. II. Induction of micronuclei and chromosomal aberrations.Sci. Total Environ., 159,81-89.
- Fotakis, G., Timbrell, J. A. (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride.Toxicol. Lett., 160,171-177.
- Repetto, G. P. A. del, Zurita, J. L. (2008). Neutral red uptake assay for the estimation of cell viability/ cytotoxicity.Nat. Protoc.,3, 1125-1131.
- Reeves, J. F., Davies, S. J., Dodd, N. J., Jha, A. N. (2008). Hydroxyl radicals (*OH) are associated with titanium dioxide (TiO(2)) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells.Mutat. Res., 640,113-122.
- Liu, S., Xu, L., Zhang, T, Ren, G., Yang, Z. (2010). Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells.Toxicology, 267, 172-177.
- Shukla, R. K., Sharma, V., Pandey, A. K., Singh, S., Sultana, S., Dhawan, A. (2011). ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells.Toxi col. Vitro,25, 231-241.
- Wang, J., Li, N., Zheng, L., Wang, S., Wang, Y, Zhao, X., Duan, Y., Cui, Y., Zhou, M., Cai, J., Gong, S., Wang, H., Hong, F. (2011). P38-Nrf-2 signaling pathway of oxidative stress in mice caused by nanoparticulate TiO(2).Biol. Trace Elem. Res., 140(2), 186-197. DOI: 10.1007/s12011-010-8687-0.
- Trouiller, B., Reliene, R., Westbrook, A., Solaimani, P., Schiestl, R. H. (2009). Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice.Cancer Res.,69, 8784-8789.
- Singh, N., Manshian, B., Jenkins, G. J., Griffiths, S. M., Williams, P. M., Maffeis, T G., Wright, C. J., Doak, S. H. (2009). NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials.Biomaterials, 30,3891-3914.
- Shi, H., Magaye, R., Castranova, V, Zhao, J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data.Part Fibre Toxicol.,10, 15. https://doi.org/1743-8977-10-15 [pii]; DOI: 10.1186/1743-8977-10-15.
- Stepkowski, T. M., Brzoska, K., Kruszewski, M. (2014). Silver nanoparticles induced changes in the expression of NF-kappaB related genes are cell type specific and related to the basal activity of NF-kappaB.Toxicol. Vitro, 28,473-478. https://doi.org/S0887-2333(14)00011-3 [pii]; DOI: 10.1016/j. tiv.2014.01.008.
- Neijenhuis, S., Verwijs-Janssen, M., Kasten-Pisula, U., Rumping, G., Borgmann, K., Dikomey, E., Begg, A. C., Vens, C. (2009). Mechanism of cell killing after ionizing radiation by a dominant negative DNA polymerase beta.DNA Repair,8, 336-346.
- Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S. M., Schlager, J. J., Hong, J. (2008). DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells.Toxicol. Appl.Pharmacol., 233,404-410.
- Lobrich, M., Shibata, A., Beucher, A., Fisher, A., Ensminger, M., Goodarzi, A. A., Barton, O., Jeggo, P. A. (2010). GammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization.Cell Cycle, 9,662-669.
- Matsumoto, M., Yaginuma, K., Igarashi, A., Imura, M., Hasegawa, M., Iwabuchi, K., Date, T, Mori, T, Ishizaki, K., Yamashita, K., Inobe, M., Matsunaga, T (2007). Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells.J. Cell. Sci., 120,1104-1112.
- Rogakou, E. P., Nieves-Neira, W, Boon, C., Pommier, Y., Bonner, W M. (2000). Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139.J. Biol. Chem., 275,9390-9395.
- Zuberek, M., Grzelak, A. (2018). Nanoparticles-caused oxidative imbalance.Adv. Exp. Med. Biol.,1048,85-98. https://doi.org/10.1007/978-3-319-72041-8_6.