Have a personal or library account? Click to login
Using microwave refraction to determine local inhomogeneities of a rotating plasma Cover

Using microwave refraction to determine local inhomogeneities of a rotating plasma

Open Access
|Apr 2023

References

  1. Lehnert, B. (1971). Rotating plasmas review paper rotating plasmas. Nucl. Fusion, 11(5), 485. http://iopscience.iop.org/0029-5515/11/5/010.
  2. Boeuf, J. -P. (2014). Rotating structures in low temperature magnetized plasmas – insight from particle simulations. Front. Physics, 2, 74. <a href="https://doi.org/10.3389/fphy.2014.00074." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fphy.2014.00074.</a>
  3. Boeuf, J. -P., & Smolyakov, A. (2018). Preface to special topic: Modern issues and applications of E × B plasmas. Phys. Plasmas, 25(6), 061001. <a href="https://doi.org/10.1063/1.5040848." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.5040848.</a>
  4. Kaganovich, I. D., Smolyakov, A., Raitses, Y., Ahedo, E., Mikellides, I. G., Jorns, B., Taccogna, F., Gueroult, R., Tsikata, S., Bourdon, A., Boeuf, J. -P., Keidar, M., Powis, A. T., Merino, M., Cappelli, M., Hara, K., Carlsson, J. A., Fisch, N. J., Chabert, P., Schweigert, I., Lafleur, T., Matyash, K., Khrabrov, A. V., Boswell, R. W., & Fruchtman, A. (2020). Physics of E×B discharges relevant to plasma propulsion and similar technologies. Phys. Plasmas, 27(12), 120601. <a href="https://doi.org/10.1063/5.0010135." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/5.0010135.</a>
  5. Lucken, R., Bourdon, A., Lieberman, M. A., & Chabert, P. (2019). Instability-enhanced transport in low temperature magnetized plasma. Phys. Plasmas, 26(7), 070702. <a href="https://doi.org/10.1063/1.5094422." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.5094422.</a>
  6. Gravier, E., Brochard, F., Bonhomme, G., Pierre, T., & Briançon, J. L. (2004). Low-frequency instabilities in a laboratory magnetized plasma column. Phys. Plasmas, 11(2), 529–537. <a href="https://doi.org/10.1063/1.1636479." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.1636479.</a>
  7. Lockwood Estrin, F., Karkari, S. K., & Bradley, J. W. (2017). Triple probe interrogation of spokes in a HiPIMS discharge. J. Phys. D-Appl. Phys., 50(29). <a href="https://doi.org/10.1088/1361-6463/aa7544." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/1361-6463/aa7544.</a>
  8. Hartfuss, H. J., & Geist, T. (2013). Fusion plasma diagnostics with mm-waves: An introduction. Hamburg: Wiley.
  9. Mazzucato, E. (2014). Electromagnetic waves for thermonuclear fusion research. World Scientific Publishing.
  10. Conway, G. D. (2006). Microwave reflectometry for fusion plasma diagnosis. Nucl. Fusion, 46(9), S665. <a href="https://doi.org/10.1088/0029-5515/46/9/S01." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/0029-5515/46/9/S01.</a>
  11. Grekov, D. L., & Tretiak, K. K. (2017). Investigation of dual polarization reflectometry for determination of plasma density and magnetic field in a spherical tokamak. J. Fusion Energy, 36(1), 1–8. <a href="https://doi.org/10.1007/s10894-016-0114-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10894-016-0114-x</a>
  12. Pavlichenko, O. S., Skibenko, A. I., Fomin, I. P., Pinos, I. B., Ocheretenko, V. L., & Berezhniy, V. L. (2000). A simple method of poloidal rotation velocity measurement in toroidal plasmas via microwave reflectometry. Probl. At. Sci. Technol., 6, 172–174.
  13. Prisiazhniuk, D., Krämer-Flecken, A., Conway, G. D., Happel, T., Lebschy, A., Manz, P., Nikolaeva, V., & Stroth, U. (2017). Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry. Plasma Phys. Control. Fusion, 59(2), 025013. <a href="https://doi.org/10.1088/1361-6587/59/2/025013." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/1361-6587/59/2/025013.</a>
  14. Siusko, Y. V., & Kovtun, Yu. V. (2021). An application of microwaves refraction for inhomogeneous plasma diagnostic. Probl. At. Sci. Technol., 2, 163–170. <a href="https://doi.org/10.46813/2021-131-163." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.46813/2021-131-163.</a>
  15. Kovtun, Yu. V., & Siusko, Y. V. (2019). Determining local inhomogeneities of rotating plasma density via microwave refraction. Phys. Lett. A, 383(31), 125880. <a href="https://doi.org/10.1016/j.physleta.2019.125880." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.physleta.2019.125880.</a>
  16. Kovtun, Y., & Siusko, Y. (2020). Determining the angular frequency of rotating cylinder via microwave. In 2020 IEEE Ukrainian Microwave Week, UkrMW 2020 – Proceedings (pp. 888–892). DOI: <a href="https://doi.org/10.1109/UkrMW49653.2020.9252707." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/UkrMW49653.2020.9252707.</a>
  17. Kovtun, Y. V., Shapoval, A. N., & Siusko, Y. V. (2019). Observation of multiply charged states ions in a high-power pulsed reflex discharge. Plasma Sources Sci. Technol., 28(10), 105009. <a href="https://doi.org/10.1088/1361-6595/ab46c8." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/1361-6595/ab46c8.</a>
  18. Kovtun, Yu. V., Skibenko, A. I., Skibenko, E. I., Larin, Yu. V., & Yuferov, V. B. (2009). Emission of multicomponent plasma pulsed reflex discharge. Bulletin of the National Technical University “KhPI” Series “High voltage engineering and electrophysics”, 39, 101–108.
  19. Shanmugan, K. S., & Breipohl, A. M. (1988). Random signals, detection, estimation and data analysis. Hoboken: Wiley.
  20. Kovtun, Yu. V., & Siusko, Y. V. (2018). Determining local inhomogeneities of the rotating plasma density via microwave refraction. In International Conference–School on Plasma Physics and Controlled Fusion. Books of abstract, September 10–13, 2018 (p. 175). Kharkiv, Ukraine.
  21. Bendat, J. S., & Piersol, A. G. (2011). Random data: analysis and measurement procedures. John Wiley & Sons.
  22. Kovtun, Yu. V., Skibenko, E. I., Skibenko, A. I., & Yuferov, V. B. (2013). Rotation of plasma layers with various densities in crossed E×B fields. Ukr. J. Phys., 58(05), 450–457. <a href="https://doi.org/10.15407/ujpe58.05.0450." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.15407/ujpe58.05.0450.</a>
  23. Kovtun, Yu. V., Syusko, Y. V., Skibenko, E. I., & Skibenko, A. I. (2018). Experimental study of inhomogeneous reflex-discharge plasma using microwave refraction interferometry. Ukr. J. Phys., 63(12), 1057. <a href="https://doi.org/10.15407/ujpe63.12.1057." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.15407/ujpe63.12.1057.</a>
  24. Kovtun, Yu. V., Skibenko, E. I., Skibenko, A. I., & Yuferov, V. B. (2013). Rotation of plasma layers with various densities in crossed E × B fields. Ukr. J. Phys., 58, 450.
  25. Kovtun, Yu. V., Skibenko, A. I., Skibenko, E. I., & Yuferov, V. B. (2013). Analysis of errors in the plasma rotation velocity measurement by the method of microwave correlation reflectometry. In 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (pp. 554–556). <a href="https://doi.org/10.1109/MSMW.2013.6622119." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/MSMW.2013.6622119.</a>
DOI: https://doi.org/10.2478/nuka-2023-0003 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 19 - 24
Submitted on: Aug 22, 2022
Accepted on: Jan 30, 2023
Published on: Apr 3, 2023
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Yurii P. Martseniuk, Yevhen V. Siusko, Yurii V. Kovtun, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.