Have a personal or library account? Click to login
Investigation of low-temperature plasmas formed in low-density gases surrounding laser-produced plasmas Cover

Investigation of low-temperature plasmas formed in low-density gases surrounding laser-produced plasmas

Open Access
|Apr 2023

References

  1. Hu, R., Seager, S., & Bains, W. (2012). Photochemistry in terrestrial exoplanet atmospheres I: Photochemistry model and benchmark cases. Astrophys. J., 761(2), 166. DOI: <a href="https://doi.org/10.1088/0004-637X/761/2/166." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/0004-637X/761/2/166.</a>
  2. Rimme, P. B., Ferus, M., & Waldmann, I. P. (2019). Identifiable acetylene features predicted for young Earth-like exoplanets with reducing atmospheres undergoing heavy bombardment. Astrophys. J., 888(1), 21. DOI: <a href="https://doi.org/10.3847/1538-4357/ab55e8." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3847/1538-4357/ab55e8.</a>
  3. Dobrijevic, M., & Parisot, J. P. (1995). Numerical simulation of organic compounds formation in planetary atmospheres: Comparison with laboratory experiments. Adv. Space Res., 15(10), 1–4. DOI: <a href="https://doi.org/10.1016/0273-1177(94)00143-O." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0273-1177(94)00143-O.</a>
  4. Löhle, S., Zander, F., & Hermann, T. A. (2017). Experimental simulation of meteorite ablation during Earth entry using a plasma wind tunnel. Astrophys. J., 837(2), 170–178. DOI: <a href="https://doi.org/10.3847/1538-4357/aa5cb5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3847/1538-4357/aa5cb5.</a>
  5. Bartnik, A., Skrzeczanowski, W., & Wachulak, P. (2021). Spectral investigations of low-temperature plasma induced in CO2 gas by nanosecond pulses of extreme ultraviolet (EUV). Plasma Sources Sci. Technol., 30(11), 115008. DOI: <a href="https://doi.org/10.1088/1361-6595/ac2e9a." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/1361-6595/ac2e9a.</a>
  6. Skrzeczanowski, W., & Długaszek, M. (2021). Al and Si quantitative analysis in aqueous solutions by LIBS method. Talanta, 225, 121916. DOI: <a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> talanta.2020.121916.
  7. Tellinghuisen, P. C., Tellinghuisen, J., & Tisone, G. C. (1978). Spectroscopic studies of diatomic noble gas halides. III. Analysis of XeF 3500 Å band system. J. Chem. Phys., 68(11), 5187–5198. DOI: <a href="https://doi.org/10.1063/1.435582." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/1.435582.</a>
  8. Tellinghuisen, P. C., Tellinghuisen, J., & Coxon, J. A. (1978). Spectroscopic studies of diatomic noble gas halides. IV. Vibrational and rotational constants for the X, B, and D states of XeF. J. Chem. Phys., 68(11), 5177–5186. DOI: <a href="https://doi.org/10.1063/1.435583." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/1.435583.</a>
  9. Tellinghuisen, J., Hays, A. K., & Hoffman, J. M. (1976). Spectroscopic studies of diatomic noble gas halides. II. Analysis of bound-free emission from XeBr, XeI, and KrF. J. Chem. Phys., 65(11), 4473–4482. DOI: <a href="https://doi.org/10.1063/1.432994." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/1.432994.</a>
  10. Huber, K. P., & Herzberg, G. (1979). Molecular spectra and molecular structure, IV. Constants of diatomic molecules. New York: Springer.
  11. Bartnik, A., Jach, K., & Świerczyński, R. (2022). Dynamics of plasmas produced by a laser pulse, inside a dense gaseous target, formed in an ambient gas. Phys. Plasmas, 29(9), 093302. DOI: <a href="https://doi.org/10.1063/5.0099683." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/5.0099683.</a>
  12. Western, C. M. (2016). PGOPHER: A program for simulating rotational, vibrational and electronic spectra. J. Quant. Spectrosc. Radiat. Transf., 186, 221–242. DOI: <a href="https://doi.org/10.1016/j.jqsrt.2016.04.010." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jqsrt.2016.04.010.</a>
  13. National Institute of Standards and Technology. (2021). The Digital Millennium Copyright Act (DMCA). Updated October 1, 2021, from https://webbook.nist.gov/chemistry.
DOI: https://doi.org/10.2478/nuka-2023-0002 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 11 - 17
Submitted on: Oct 6, 2022
Accepted on: Dec 5, 2022
Published on: Apr 3, 2023
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Mateusz Majszyk, Andrzej Bartnik, Wojciech Skrzeczanowski, Tomasz Fok, Łukasz Węgrzyński, Mirosław Szczurek, Henryk Fiedorowicz, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.