Have a personal or library account? Click to login
Prompt gamma-ray methods for industrial process evaluation: A simulation study Cover

Prompt gamma-ray methods for industrial process evaluation: A simulation study

Open Access
|Feb 2022

References

  1. Mohd Yunos, M. A. S., Hussain, S. A., Mohamed Yusoff, H., & Abddullah, J. (2016). Industrial radiotracer technology for process optimizations in chemical industries – A review. Pertamika J. Scholarly Res. Rev., 2(3), 20–46. https://core.ac.uk/download/pdf/234560224.pdf.
  2. Othman, N., & Kamarudin, S. K. (2014). Radiotracer technology in mixing processes for industrial applications. Sci. World J., 2014, 1–15. DOI: 10.1155/2014/768604.
  3. Thyn, J., & Zitny, R. (2004). Radiotracer applications for the analysis of complex flow structure in industrial apparatuses. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 213, 339–347. DOI: 10.1016/S0168-583X(03)01648-3.
  4. Eapenm, A. C., Raom, S. M., Agashem, S. M., Ajmera, R. L., & Yelgaonkar, V. N. (1990). Radiotracer applications in steel, petroleum and maritime industries with significant economic benefits. Isot. Environ. Health Stud., 26(9), 424–429. DOI: 10.1080/10256019008624349.
  5. Mohd Yunos, M. A. S., Sipaun, S. M., & Hussain, S. A. (2019). Feasibility of using radioactive particle tracking as an alternative technique for experimental investigation in bubble column reactor. IOP Conf. Ser. Mater. Sci. Eng., 554, 012005. DOI: 10.1088/1757-899X/554/1/012005.
  6. Lin, J. S., Chen, M. M., & Chao, B. T. (1985). A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds. AIChE J., 31(3), 465–473. DOI: 10.1002/aic.690310314.
  7. Vieira, W. S., Brandão, L. E. B., & Braz, D. (2014). An alternative method for tracking a radioactive particle inside a fluid. Appl. Radiat. Isot., 85, 139–146. DOI: 10.1016/j.apradiso.2013.12.006.
  8. International Atomic Energy Agency. (2008). Industrial process gamma tomography. Vienna: IAEA. (IAEATECDOC-1589). Available from https://www-pub.iaea.org/MTCD/Publications/PDF/TE_1589_web.pdf.
  9. Wang, M. (2015). Industrial tomography. Elsevier. https://doi.org/10.1016/C2013-0-16466-5.
  10. Abdullah, J. (2005). Gamma-ray scanning for trouble-shooting, optimisation and predictive maintenance of distillation columns. Hydrocarbon Asia, 1/2, 62–65. https://scanningtech.com/PDF/article3.pdf.
  11. Haraguchi, M. I., Kim, H. Y., Sprenger, F. E., & Calvo, W. A. P. (2012). Industrial equipment troubleshooting with imaging technique improved gamma-ray absorption scans. J. Phys. Sci. Appl., 2(8), 359–371.
  12. Suma, T., Yelgaonkar, V. N., Tiwari, C. B., & Dhakar, V. D. (2016). Detection of interfaces and voids in pipelines using gamma scanning. IOSR J. Appl. Phys., 8(04), 12–26. DOI: 10.9790/4861-0804011226.
  13. Askari, M., Taheri, A., Mojtahedzadeh Larijani, M., Movafeghi, A., & Faripour, H. (2019). A gamma-ray tomography system to determine wax deposition distribution in oil pipelines. Rev. Sci. Instrum., 90(7), 075103. DOI: 10.1063/1.5095859.
  14. Saengchantr, D., Srisatit, S., & Chankow, N. (2019). Development of gamma ray scanning coupled with computed tomographic technique to inspect a broken pipe structure inside laboratory scale vessel. Nucl. Eng. Technol., 51(3), 800–806. DOI: 10.1016/j.net.2018.12.022.
  15. Zain, R. M., Yahya, R., Rahman, M. F., & Yusof, N. M. (2015). Neutron imaging system for level interface measurement. In Malaysia International NDT Conference & Exhibition 2015 (MINDTCE-15), November 2015, pp. 22–24. https://www.ndt.net/events/MINDTCE-15/app/content/Paper/26_Zain.pdf.
  16. Zain, R. M., Ithnin, H., Razali, A. M., Yusof, N. H. M., Mustapha, I., Yahya, R., Othman, N., & Rahman, M. F. A. (2017). Slow neutron mapping technique for level interface measurement. AIP Conf. Proc., 1799, 050004. DOI: 10.1063/1.4972938.
  17. Bishnoi, S., Sarkar, P., Thomas, R., Patel, T., & Gadkari, S. (2016). Fast neutron radiography with DT neutron generator. Non-Destruct. Eval., 22, 68–73.
  18. Bishnoi, S., Thomas, R. G., Sarkar, P. S., Datar, V. M., & Sinha, A. (2015). Simulation study of fast neutron radiography using GEANT4. J. Instrum., 10(02), P02002–P02002. DOI: 10.1088/1748-0221/10/02/P02002.
  19. International Atomic Energy Agency. (2008). Neutron imaging: A non-destructive tool for materials testing. Vienna: IAEA. Available from https://www-pub.iaea.org/MTCD/Publications/PDF/te_1604_web.pdf.
  20. Schillinger, B. (2019). An affordable image detector and a low-cost evaluation system for computed tomography using neutrons, X-rays or visible light. Quantum Beam Sci., 3(4), 21. DOI: 10.3390/qubs3040021.
  21. Hasan, N. M., Zain, R. M., Abdul Rahman, M. F., & Mustapha, I. (2009). The use of a neutron backscatter technique for in-situ water measurement in paper-recycling industry. Appl. Radiat. Isot., 67(7/8), 1239–1243. DOI: 10.1016/j.apradiso.2009.02.020.
  22. Bell, A. R., McRae, G., Wassenaar, R., & Wells, G. (2011). Neutron activation for planar and SPECT imaging. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro, March 2011, pp. 1801–1804. DOI: 10.1109/ISBI.2011.5872756.
  23. Kim, M. -S., Shin, H. -B., Choi, M. -G., Monzen, H., Shin, J. G., Suh, T. S., & Yoon, D. -K. (2020). Reference based simulation study of detector comparison for BNCT-SPECT imaging. Nucl. Eng. Technol., 52(1), 155–163. DOI: 10.1016/j.net.2019.07.002.
  24. X-5 Monte Carlo Team. (2008). MCNP – A General Monte Carlo N-Particle Transport Code, Version 5. Volume I: Overview and theory. Los Alamos National Security, LLC. Available from https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf.
  25. Hart, T. (2015). Neutron backscatter versus gamma transmission analysis for coke drum applications. Thermo Scientific. Available from http://tools.thermofisher.com/content/sfs/brochures/EPMANCoker-0215.pdf.
  26. Licata, M., Aspinall, M. D., Bandala, M., Cave, F. D., Conway, S., Gerta, D., Parker, H. M. O., Roberts, N. J., Taylor, G. C., & Joyce, M. J. (2020). Depicting corrosion-born defects in pipelines with combined neutron/γ ray backscatter: a biomimetic approach. Sci. Rep., 10(1), 1486. DOI: 10.1038/s41598-020-58122-3.
DOI: https://doi.org/10.2478/nuka-2022-0001 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 11 - 18
Submitted on: Feb 1, 2021
|
Accepted on: Nov 9, 2021
|
Published on: Feb 17, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Mohammed Siddig H. Mohammed, Abdulsalam Alhawsawi, M. S. Aljohani, Mohammed M. Damoom, Essam M. Banoqitah, Ezzat Elmoujarkach, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.