References
- Mohd Yunos, M. A. S., Hussain, S. A., Mohamed Yusoff, H., & Abddullah, J. (2016). Industrial radiotracer technology for process optimizations in chemical industries – A review. Pertamika J. Scholarly Res. Rev., 2(3), 20–46. https://core.ac.uk/download/pdf/234560224.pdf.
- Othman, N., & Kamarudin, S. K. (2014). Radiotracer technology in mixing processes for industrial applications. Sci. World J., 2014, 1–15. DOI: 10.1155/2014/768604.
- Thyn, J., & Zitny, R. (2004). Radiotracer applications for the analysis of complex flow structure in industrial apparatuses. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 213, 339–347. DOI: 10.1016/S0168-583X(03)01648-3.
- Eapenm, A. C., Raom, S. M., Agashem, S. M., Ajmera, R. L., & Yelgaonkar, V. N. (1990). Radiotracer applications in steel, petroleum and maritime industries with significant economic benefits. Isot. Environ. Health Stud., 26(9), 424–429. DOI: 10.1080/10256019008624349.
- Mohd Yunos, M. A. S., Sipaun, S. M., & Hussain, S. A. (2019). Feasibility of using radioactive particle tracking as an alternative technique for experimental investigation in bubble column reactor. IOP Conf. Ser. Mater. Sci. Eng., 554, 012005. DOI: 10.1088/1757-899X/554/1/012005.
- Lin, J. S., Chen, M. M., & Chao, B. T. (1985). A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds. AIChE J., 31(3), 465–473. DOI: 10.1002/aic.690310314.
- Vieira, W. S., Brandão, L. E. B., & Braz, D. (2014). An alternative method for tracking a radioactive particle inside a fluid. Appl. Radiat. Isot., 85, 139–146. DOI: 10.1016/j.apradiso.2013.12.006.
- International Atomic Energy Agency. (2008). Industrial process gamma tomography. Vienna: IAEA. (IAEATECDOC-1589). Available from https://www-pub.iaea.org/MTCD/Publications/PDF/TE_1589_web.pdf.
- Wang, M. (2015). Industrial tomography. Elsevier. https://doi.org/10.1016/C2013-0-16466-5.
- Abdullah, J. (2005). Gamma-ray scanning for trouble-shooting, optimisation and predictive maintenance of distillation columns. Hydrocarbon Asia, 1/2, 62–65. https://scanningtech.com/PDF/article3.pdf.
- Haraguchi, M. I., Kim, H. Y., Sprenger, F. E., & Calvo, W. A. P. (2012). Industrial equipment troubleshooting with imaging technique improved gamma-ray absorption scans. J. Phys. Sci. Appl., 2(8), 359–371.
- Suma, T., Yelgaonkar, V. N., Tiwari, C. B., & Dhakar, V. D. (2016). Detection of interfaces and voids in pipelines using gamma scanning. IOSR J. Appl. Phys., 8(04), 12–26. DOI: 10.9790/4861-0804011226.
- Askari, M., Taheri, A., Mojtahedzadeh Larijani, M., Movafeghi, A., & Faripour, H. (2019). A gamma-ray tomography system to determine wax deposition distribution in oil pipelines. Rev. Sci. Instrum., 90(7), 075103. DOI: 10.1063/1.5095859.
- Saengchantr, D., Srisatit, S., & Chankow, N. (2019). Development of gamma ray scanning coupled with computed tomographic technique to inspect a broken pipe structure inside laboratory scale vessel. Nucl. Eng. Technol., 51(3), 800–806. DOI: 10.1016/j.net.2018.12.022.
- Zain, R. M., Yahya, R., Rahman, M. F., & Yusof, N. M. (2015). Neutron imaging system for level interface measurement. In Malaysia International NDT Conference & Exhibition 2015 (MINDTCE-15), November 2015, pp. 22–24. https://www.ndt.net/events/MINDTCE-15/app/content/Paper/26_Zain.pdf.
- Zain, R. M., Ithnin, H., Razali, A. M., Yusof, N. H. M., Mustapha, I., Yahya, R., Othman, N., & Rahman, M. F. A. (2017). Slow neutron mapping technique for level interface measurement. AIP Conf. Proc., 1799, 050004. DOI: 10.1063/1.4972938.
- Bishnoi, S., Sarkar, P., Thomas, R., Patel, T., & Gadkari, S. (2016). Fast neutron radiography with DT neutron generator. Non-Destruct. Eval., 22, 68–73.
- Bishnoi, S., Thomas, R. G., Sarkar, P. S., Datar, V. M., & Sinha, A. (2015). Simulation study of fast neutron radiography using GEANT4. J. Instrum., 10(02), P02002–P02002. DOI: 10.1088/1748-0221/10/02/P02002.
- International Atomic Energy Agency. (2008). Neutron imaging: A non-destructive tool for materials testing. Vienna: IAEA. Available from https://www-pub.iaea.org/MTCD/Publications/PDF/te_1604_web.pdf.
- Schillinger, B. (2019). An affordable image detector and a low-cost evaluation system for computed tomography using neutrons, X-rays or visible light. Quantum Beam Sci., 3(4), 21. DOI: 10.3390/qubs3040021.
- Hasan, N. M., Zain, R. M., Abdul Rahman, M. F., & Mustapha, I. (2009). The use of a neutron backscatter technique for in-situ water measurement in paper-recycling industry. Appl. Radiat. Isot., 67(7/8), 1239–1243. DOI: 10.1016/j.apradiso.2009.02.020.
- Bell, A. R., McRae, G., Wassenaar, R., & Wells, G. (2011). Neutron activation for planar and SPECT imaging. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro, March 2011, pp. 1801–1804. DOI: 10.1109/ISBI.2011.5872756.
- Kim, M. -S., Shin, H. -B., Choi, M. -G., Monzen, H., Shin, J. G., Suh, T. S., & Yoon, D. -K. (2020). Reference based simulation study of detector comparison for BNCT-SPECT imaging. Nucl. Eng. Technol., 52(1), 155–163. DOI: 10.1016/j.net.2019.07.002.
- X-5 Monte Carlo Team. (2008). MCNP – A General Monte Carlo N-Particle Transport Code, Version 5. Volume I: Overview and theory. Los Alamos National Security, LLC. Available from https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf.
- Hart, T. (2015). Neutron backscatter versus gamma transmission analysis for coke drum applications. Thermo Scientific. Available from http://tools.thermofisher.com/content/sfs/brochures/EPMANCoker-0215.pdf.
- Licata, M., Aspinall, M. D., Bandala, M., Cave, F. D., Conway, S., Gerta, D., Parker, H. M. O., Roberts, N. J., Taylor, G. C., & Joyce, M. J. (2020). Depicting corrosion-born defects in pipelines with combined neutron/γ ray backscatter: a biomimetic approach. Sci. Rep., 10(1), 1486. DOI: 10.1038/s41598-020-58122-3.