Have a personal or library account? Click to login
Studies on water transport in quasi two-dimensional porous systems using neutron radiography Cover

Studies on water transport in quasi two-dimensional porous systems using neutron radiography

Open Access
|Dec 2021

References

  1. Azeem, M., Boughattas, A., Wiener, J., & Havelka, A. (2017). Mechanism of liquid water transport in fabrics: A review. Vlákna a textil (Fibres and Textiles), 24(4), 58–65. http://vat.ft.tul.cz/2017/4/VaT_2017_4_10.pdf.
  2. Lei, M., Li, Y., Liu, Y., Ma, Y., Cheng, L., & Hu, Y. (2020). Effect of weaving structures on the water wicking-evaporating behavior of woven fabrics. Polymers, 12, 422. DOI: 10.3390/polym12020422.
  3. de Azevedo, E. N., Alme, L. R., Engelsberg, M., Fossum, J. O., & Dommersnes, P. (2008). Fluid imbibition in paper fibres: Precursor front. Phys. Rev. E, 78, 066317. DOI: 10.1103/PhysRevE.78.066317.
  4. Benloufa, S., Fayala, F., & Nasrallah, S. B. (2008). Capillary rise in micro pores of jersey knitting structure. J. Eng. Fiber Fabr., 3(3), 47–54. http://www.jeffjournal.org/papers/Volume3/JEFF08-00007R1Benltoufa.pdf.
  5. Abd, A. E. -E., Czachor, A., Milczarek, J. J., & Pogorzelski, J. (2005). Neutron radiography studies of water migration in construction porous materials. IEEE Trans. Nucl. Sci., 52(1), 299–304. DOI: 10.1109/TNS.2005.843642.
  6. Hamdaoui, M., Achour, N. S., & Nasrallah, S. B. (2014). The influence of woven fabric structure on kinetics of water sorbtion. J. Eng. Fiber Fabr., 9(1), 101–106. http://www.jeffjournal.org/papers/Volume9/V9I1.12.M.Hamdaoui.pdf.
  7. Samyn, P. (2013). Wetting and hydrophobic modification of cellulose surfaces for paper applications. J. Mater. Sci., 48(19), 6455–6498. DOI: 10.1007/s10853-013-7519-y.
  8. Xie, Y., Hill, C. A. S., Jalaludin, Z., Curling, S. F., Anandjiwala, R. D., Norton, A. J., & Newman, G. (2011). The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model. J. Mater. Sci., 46(2), 479–489. DOI: 10.1007/s10853-010-4935-0.
  9. Abd, A. E., & Milczarek, J. J. (2004). Neutron radiography study of water absorption in porous building materials: anomalous diffusion analysis. J. Phys. D-Appl. Phys., 37(16), 2305–2313. DOI: 10.1088/0022-3727/37/16/013.
  10. Leisen, J., Hojjatie, B., Coffin, D. W., & Beckham, H. W. (2001). In-plane moisture transport in paper detected by magnetic resonance imaging. Dry. Technol., 19(1), 199–206. DOI: 10.1081/DRT-100001361.
  11. Perré, P. (2011). A review of modern computational and experimental tools relevant to the field of drying. Dry. Technol., 29(13), 1529–1541. DOI: 10.1080/07373937.2011.580872.
  12. Escalona, I., Jomaa, W., Olivera-Fuentes, C., Crine, M., & Leonard, A. (2010). Convective drying of gels: Comparison between simulated and experimental moisture profiles obtained by X-ray microtomography. Dry. Technol., 28(5), 644–650. DOI: 10.1080/07373931003788734.
  13. Domanus, J. C. (Ed.). (1992). Practical neutron radiography. Dordrecht: Kluwer Academic Publishers. (EUR-14424).
  14. Strobl, M., Manke, I., Kardjilov, N., Hilger, A., Dawson, M., & Banhart, J. (2009). Advances in neutron radiography and tomography. J. Phys. D-Appl. Phys., 42(24), 243001. DOI: 10.1088/0022-3727/42/24/243001.
  15. Anderson, I. S., McGreevy, R. L., & Bilheux, H. Z. (Eds.). (2009). Neutron imaging and applications. Berlin: Springer. DOI: 10.1007/978-0-387-78693-3.
  16. Milczarek, J. J., Czachor, A., Abd, A. E., & Wiśniewski, Z. (2005). Dynamic neutron radiography observations of water migration in porous media. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 542(1/3), 232–236. DOI: 10.1016/j.nima.2005.01.105.
  17. Cmiel, K., Milczarek, J. J., Bam, L. C., Fijał-Kirejczyk, I. M., Jurkowski, Z., & Żołądek, J. (2013). Drying kinetics of particulate corundum layers. Acta Phys. Pol. A, 124, 1029–1033. DOI: 10.12693/APhysPolA.124.1029.
  18. Fijał-Kirejczyk, I. M., Milczarek, J. J., Żołądek-Nowak, J., de Beer, F. C., Radebe, M. B., & Nothnagel, G. (2012). Application of statistical image analysis in quantifcation of neutron radiography images of drying. Acta Phys. Pol. A, 122, 410–414. DOI: 10.12693/APhysPolA.122.410.
  19. Fijał-Kirejczyk, I. M., Milczarek, J. J., de Beer, F. C., Radebe, M. B., Nothnagel, G., & Żołądek-Nowak, J. (2012). Thermal neutron radiography studies of drying of rectangular blocks of wet mortar. Nukleonika, 57(4), 529–535. http://www.nukleonika.pl/www/back/full/vol57_2012/v57n4p529f.pdf.
  20. Rasband, W. S. (1997–2018). ImageJ [computer software]. Bethesda, Maryland, USA: National Institutes of Health. https://imagej.nih.gov/ij/.
  21. Lehmann, E. H., Vontobel, P., & Kardjilov, N. (2004). Hydrogen distribution measurements by neutrons. Appl. Radiat. Isot., 61, 503–509. DOI: 10.1016/j.apradiso.2004.03.075.
  22. Kardijlov, N., de Beer, F., Hassanein, R., Lehmann, E., & Vontobel, P. (2005). Scattering corrections in neutron radiography using point scattered functions. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 542, 336–341. DOI: 10.1016/j.nima.205.01.159.
  23. Deinert, M. R., Parlange, J. -Y., Steenhuis, T., Throop, J., Ünlü, K., & Cady, K. B. (2004). Measurement of fluid contents and wetting front profiles by real-time neutron radiography. J. Hydrol., 290, 192–201. DOI: 10.1016/j.hydrol.2003.11.018.
  24. Kim, F. H., Penumadu, D., & Hussey, D. S. (2012). Water distribution variation in partially saturated granular materials using neutron imaging. J. Geotech. Geoenviron. Eng., 138(2), 147–154. DOI: 10.1061/(ASCE)GT.1943-5606.0000583.
  25. Kang, M., Bilheux, H. Z., Voisin, S., Cheng, C. L., Perfect, E., Horita, J., & Warren, J. M. (2013). Water calibration measurements for neutron radiography: Application to water content quantification in porous media. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ. 708, 24–31. DOI: 10.1016/j.nima.2012.12.112.
  26. Parada, M., Vontobel, P., Rossi, R. M., Derome, D., & Carmeliet, J. (2017). Dynamic wicking process in textiles. Transp. Porous Media, 119, 611–632. DOI: 10.1007/s11242-017-0901-5.
  27. Cai, J., & Yu, B. (2011). A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media, 89(2), 251–253. DOI: 10.1007/s11242-011-9767-0.
  28. Cai, J. -C., Yu, B. -M., Mei, M. -F., & Luo, L. (2010). Capillary rise in a single tortuous capillary. Chin. Phys. Lett., 27(5), 054701. DOI: 10.1088/0256-307X/27/5/054701.
  29. Metzler, R., & Klafter, J. (2000). The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339, 1–77. DOI: 10.1016/S0370-1573(00)00070-3.
  30. de Azevedo, E. N., de Sousa, P. L., de Souza, R. E., Engelsberg, M., de Miranda, M. N. do N., & Silva, M. A. (2006). Concentration dependent diffusivity and anomalous diffusion: A magnetic resonance imaging study of water ingress in porous zeolite. Phys. Rev. E, 73, 011204. DOI: 10.1103/PhysRevE.73.011204.
DOI: https://doi.org/10.2478/nuka-2021-0034 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 3 - 9
Submitted on: Jun 23, 2020
|
Accepted on: Sep 10, 2021
|
Published on: Dec 5, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Izabela M. Fijał-Kirejczyk, Massimo Rogante, Jacek J. Milczarek, Joanna Żołądek-Nowak, Zdzisław Jurkowski, Jan Żołądek, Dariusz Rusinek, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.