Have a personal or library account? Click to login
Radiolytic synthesis of gold nanoparticles in HEMA-based hydrogels: Potentialities for imaging nanocomposites Cover

Radiolytic synthesis of gold nanoparticles in HEMA-based hydrogels: Potentialities for imaging nanocomposites

Open Access
|Nov 2021

References

  1. Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107(3), 668–677.
  2. Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 104(1), 293–346.
  3. García, M. A. (2011). Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D-Appl. Phys., 44(28), 283001.
  4. Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discus. Faraday Soc., 11, 55–75.
  5. Huang, H. H., Yan, F. Q., Kek, Y. M., Chew, C. H., Xu, G. Q., Ji, W., & Tang, S. H. (1997). Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir, 13(2), 172–175.
  6. Sato-Berrú, R., Redón, R., Vázquez Olmos, A., & Saniger, J. M. (2009). Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy. J. Raman Spectrosc., 40(4), 376–380.
  7. Sánchez-Iglesias, A., Pastoriza-Santos, I., Pérez-Juste, J., Rodríguez-González, B., Garcia de Abajo, F. J., & Liz-Marzán, L. M. (2006). Synthesis and optical properties of gold nanodecahedra with size control. Adv. Mater., 18(19), 2529–2534.
  8. Belloni, J., Mostafavi, M., Remita, H., Marignier, J. L., & Delcourt, M. O. (1998). Radiation-induced synthesis of mono-and multi-metallic clusters and nanocolloids. New J. Chem., 22(11), 1239–1255.
  9. Abedini, A., Daud, A. R., Hamid, M. A. A., Othman, N. K., & Saion, E. (2013). A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res. Lett., 8(1), 474.
  10. Henglein, A. (1999). Radiolytic preparation of ultra-fine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir, 15(20), 6738–6744.
  11. Gachard, E., Remita, H., Khatouri, J., Keita, B., Nadjo, L., & Belloni, J. (1998). Radiation-induced and chemical formation of gold clusters. New J. Chem., 22(11), 1257–1265.
  12. Tagawa, S., Hayashi, N., Yoshida, Y., Washio, M., & Tabata, Y. (1989). Pulse radiolysis studies on liquid alkanes and related polymers. Int. J. Radiat. Appl. Instrum. C-Radiat. Phys. Chem., 34(4), 503–511.
  13. Kapoor, S., Lawless, D., Kennepohl, P., Meisel, D., & Serpone, N. (1994). Reduction and aggregation of silver ions in aqueous gelatin solutions. Langmuir, 10(9), 3018–3022.
  14. Goldenberg, L. M., Sakhno, O. V., Smirnova, T. N., Helliwell, P., Chechik, V., & Stumpe, J. (2008). Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation. Chem. Mat., 20(14), 4619–4627.
  15. Pardo Yissar, V., Gabai, R., Shipway, A. N., Bourenko, T., & Willner, I. (2001). Gold nanoparticle/hydrogel composites with solvent switchable electronic properties. Adv. Mater., 13(17), 1320–1323.
  16. Wang, C., Flynn, N. T., & Langer, R. (2004). Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites. Adv. Mater., 16(13), 1074–1079.
  17. Marić, I., Vujičić, N. Š., Pustak, A., Gotić, M., & Jurkin, T. (2020). One-step synthesis of poly (ethylene oxide)/gold nanocomposite hydrogels and suspensions using gamma-irradiation. Radiat. Phys. Chem., 170, 108657.
  18. Bond, G. C., & Thompson, D. T. (2000). Goldcatalysed oxidation of carbon monoxide. Gold Bull., 33(2), 41–50.
  19. Belloni, J. (2006). Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal. Today, 113(3/4), 141–156.
  20. Evanoff Jr, D. D., & Chumanov, G. (2005). Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem, 6(7), 1221–1231.
  21. Vô, K. D. N., Kowandy, C., Dupont, L., & Coqueret, X. (2015). Evidence of chitosan-mediated reduction of Au(III) to Au(0) nanoparticles under electron beam by using OH and eaq scavengers. Chem. Commun., 51(19), 4017–4020.
  22. Li, T., Park, H. G., & Choi, S. H. (2007). γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater. Chem. Phys., 105(2/3), 325–330.
  23. Zhu, C. -H., Hai, Z. -B., Cui, C. -H., Li, H. -H., Chen, J. -F., & Yu, S. -H. (2012). In situ controlled synthesis of thermosensitive poly(N-isopropylacrylamide)/Au nanocomposite hydrogels by gamma radiation for catalytic application. Small, 8(6), 930–936.
  24. Kumaraswamy, S., & Mallaiah, S. H. (2016). Swelling and mechanical properties of radiation crosslinked Au/PVA hydrogel nanocomposites. Radiat. Eff. Defects Solids, 171(11/12), 869–878.
  25. Kumaraswamy, S., Srikanth, L. P., & Somashekarappa, H. M. (2020). Swelling and cytocompatibility studies of Au/PVA hydrogel nanocomposites synthesized using gamma irradiation technique. AIP Conf. Proc., 2244, art. no. 070005.
  26. Kumar, M., Varshney, L., & Francis, S. (2005). Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix. Radiat. Phys. Chem., 73(1), 21–27.
  27. Henríquez, C. M. G., Guerra, G. D. C. P., Vallejos, M. A. S., de la Fuente, S. D. R., Flores, M. T. U., & Jimenez, L. M. R. (2014). In situ silver nanoparticle formation embedded into a photopolymerized hydrogel with biocide properties. J. Nanostructure Chem., 4(4), 119–132.
  28. Krklješ, A. N., Marinović-Cincović, M. T., Kacarevic-Popovic, Z. M., & Nedeljković, J. M. (2007). Radiolytic synthesis and characterization of Ag-PVA nanocomposites. Eur. Polym. J., 43(6), 2171–2176.
  29. Krklješ, A., Nedeljković, J. M., & Kačarević-Popović, Z. M. (2007). Fabrication of Ag-PVA hydrogel nanocomposite by γ-irradiation. Polymer Bull., 58(1), 271–279.
  30. Jovanović, Ž., Krklješ, A., Stojkovska, J., Tomić, S., Obradović, B., Mišković-Stanković, V., & Kačarević-Popović, Z. (2011). Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiat. Phys. Chem., 80(11), 1208–1215.
  31. Schulz, G. V., & Harborth, G. (1947). The mechanism of the explosive polymerization of methyl methacrylate. Die Makromolekulare Chemie, 1(1), 106–139.
  32. Flory, P. J. (1953). Principles of polymer chemistry. Ithaca, NY: Cornell University Press.
  33. Campan, R., Cazaux, F., & Coqueret, X. (2002). Controlled swelling of poly(hydroxyethyl methacrylate) hydrogels by photochemical grafting of hydrophobic acrylates. Macromol. Mater. Eng., 287(12), 924–930.
  34. Olejniczak, J., Rosiak, J., & Charlesby, A. (1991). Gel/dose curves for polymers undergoing simultaneous crosslinking and scission. Radiat. Phys. Chem., 37(3), 499–504.
  35. Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solutions. J. Phys. Chem. Ref. Data, 17(2), 513–886.
  36. Ilavský, M., Fähnrich, J., Nedbal, J., & Bouchal, K. (1996). Swelling and photoelastic behaviour of ionized hydrogels of poly(acrylic acid). Polymer Bull., 37, 791–798.
  37. Serjeant, E. P., & Dempsey, B. (1979). Ionisation constants of organic acids in aqueous solution. New York: Pergamon Press. (IUPAC Chemical Data Series No. 23).
  38. Oosawa, F. (1971). Polyelectrolytes. New York: Marcel Dekker.
  39. Schild, H. G., & Tirrell, D. A. (1990). Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J. Phys. Chem., 94, 4352–4356.
  40. Alexander, P., Charlesby, A., & Ross, M. (1954). The degradation of solid polymethylmethacrylate by ionizing radiation. Proc. R. Soc. London Ser. A-Math. Phys. Sci., 223(1154), 392–404.
  41. Choi, J. O., Moore, J. A., Corelli, J. C., Silverman, J. P., & Bakhru, H. (1988). Degradation of poly(methyl methacrylate) by deep ultraviolet, X-ray, electron beam, and proton beam irradiations. J. Vac. Sci. Technol. B, 6(6), 2286–2289.
  42. Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release, 5(1), 23–36.
  43. Dey, G. R., El Omar, A. K., Jacob, J. A., Mostafavi, M., & Belloni, J. (2011). Mechanism of trivalent gold reduction and reactivity of transient divalent and monovalent gold ions studied by gamma and pulse radiolysis. J. Phys.Chem. A, 115, 383–391.
DOI: https://doi.org/10.2478/nuka-2021-0025 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 165 - 177
Submitted on: Jan 19, 2021
Accepted on: Feb 22, 2021
Published on: Nov 25, 2021
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Katsiaryna Dziarabina, Uliana Pinaeva, Sławomir Kadłubowski, Piotr Ulański, Xavier Coqueret, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.