Have a personal or library account? Click to login
Radiolytic synthesis of gold nanoparticles in HEMA-based hydrogels: Potentialities for imaging nanocomposites Cover

Radiolytic synthesis of gold nanoparticles in HEMA-based hydrogels: Potentialities for imaging nanocomposites

Open Access
|Nov 2021

Figures & Tables

Scheme 1

Scheme of the poly(HEMA) xerogel synthesis by photopolymerization.
Scheme of the poly(HEMA) xerogel synthesis by photopolymerization.

Fig. 1

Evolution of the near IR band assigned to methacrylate νCH2=C< groups as a function of UV curing time (0–60 min) for a 2 mm-thick sample based on HEMA/EGDMA/Darocur 1173 (99/0.5/0.5 wt%).
Evolution of the near IR band assigned to methacrylate νCH2=C< groups as a function of UV curing time (0–60 min) for a 2 mm-thick sample based on HEMA/EGDMA/Darocur 1173 (99/0.5/0.5 wt%).

Fig. 2

Monomer conversion as a function of curing time for HEMA/EGDMA/Darocur 1173 at various EGDMA content (0, 0.1, 0.5, 1, and 5 wt%) and constant Darocur 1173 concentration of 0.5 wt%.
Monomer conversion as a function of curing time for HEMA/EGDMA/Darocur 1173 at various EGDMA content (0, 0.1, 0.5, 1, and 5 wt%) and constant Darocur 1173 concentration of 0.5 wt%.

Fig. 3

Gel fraction as a function of exposure dose in synthesizing poly(HEMA) hydrogels by UV irradiation (254 nm, irradiance 2.6 mW·cm−2) of concentrated aqueous monomer/cross-linker solution containing hydrogen peroxide. Volume fractions of aqueous 30% H2O2 solutions are given in the graph, the remaining fraction being 99/1 v/v HEMA/EGDMA. Inset: maximum gel fraction as a function of hydrogen peroxide content (as the volume fraction of aqueous 30% H2O2 solution).
Gel fraction as a function of exposure dose in synthesizing poly(HEMA) hydrogels by UV irradiation (254 nm, irradiance 2.6 mW·cm−2) of concentrated aqueous monomer/cross-linker solution containing hydrogen peroxide. Volume fractions of aqueous 30% H2O2 solutions are given in the graph, the remaining fraction being 99/1 v/v HEMA/EGDMA. Inset: maximum gel fraction as a function of hydrogen peroxide content (as the volume fraction of aqueous 30% H2O2 solution).

Fig. 4

Equilibrium degree of swelling of poly(HEMA) hydrogels synthesized by UV irradiation (254 nm, irradiance 2.6 mW·cm−2) of concentrated aqueous monomer/cross-linker solution containing hydrogen peroxide. Volume fractions of aqueous 30% H2O2 solutions are given in the graph, the remaining fraction being 99/1 v/v HEMA/EGDMA. Swelling tests performed in water at RT.
Equilibrium degree of swelling of poly(HEMA) hydrogels synthesized by UV irradiation (254 nm, irradiance 2.6 mW·cm−2) of concentrated aqueous monomer/cross-linker solution containing hydrogen peroxide. Volume fractions of aqueous 30% H2O2 solutions are given in the graph, the remaining fraction being 99/1 v/v HEMA/EGDMA. Swelling tests performed in water at RT.

Fig. 5

Equilibrium degree of swelling of poly(HEMA-co-MADQUAT) hydrogels synthesized by UV irradiation (254 nm, irradiance 2.6 mW·cm−2, exposure dose 8 J·cm−2) of solutions composed of 50 vol.% of aqueous 30% hydrogen peroxide, 47.5–48.75 vol.% of HEMA/EGDMA (99/1) and 1.25–2.5 vol.% of aqueous 75% MADQUAT, as a function of pH.
Equilibrium degree of swelling of poly(HEMA-co-MADQUAT) hydrogels synthesized by UV irradiation (254 nm, irradiance 2.6 mW·cm−2, exposure dose 8 J·cm−2) of solutions composed of 50 vol.% of aqueous 30% hydrogen peroxide, 47.5–48.75 vol.% of HEMA/EGDMA (99/1) and 1.25–2.5 vol.% of aqueous 75% MADQUAT, as a function of pH.

Fig. 6

Equilibrium degree of swelling of poly(HEMA-co-AA) hydrogels synthesized by UV irradiation (254 nm, irradiance 2.6 mW·cm−2, exposure dose 8 J·cm−2) of solutions composed of 50 vol.% of aqueous 30% hydrogen peroxide, 45–48.75 vol.% of HEMA/EGDMA (99/1) and 1.25–5 vol.% of AA, as a function of pH.
Equilibrium degree of swelling of poly(HEMA-co-AA) hydrogels synthesized by UV irradiation (254 nm, irradiance 2.6 mW·cm−2, exposure dose 8 J·cm−2) of solutions composed of 50 vol.% of aqueous 30% hydrogen peroxide, 45–48.75 vol.% of HEMA/EGDMA (99/1) and 1.25–5 vol.% of AA, as a function of pH.

Fig. 7

Weight at equilibrium swelling of poly(HEMA-co-NIPAm) hydrogels synthesized by UV irradiation (254 nm, irradiance 2.6 mW·cm−2, absorbed dose 8 J·cm−2) of solutions composed of 50 vol.% of aqueous 30% hydrogen peroxide, 45–48.75 vol.% of HEMA/EGDMA (99/1) and 1.25–5 vol.% of NIPAm, as a function of temperature, normalized to the weight at equilibrium swelling at 26.0°C.
Weight at equilibrium swelling of poly(HEMA-co-NIPAm) hydrogels synthesized by UV irradiation (254 nm, irradiance 2.6 mW·cm−2, absorbed dose 8 J·cm−2) of solutions composed of 50 vol.% of aqueous 30% hydrogen peroxide, 45–48.75 vol.% of HEMA/EGDMA (99/1) and 1.25–5 vol.% of NIPAm, as a function of temperature, normalized to the weight at equilibrium swelling at 26.0°C.

Fig. 8

Effect of irradiation dose (0–100 kGy) applied to the water-swollen hydrogels on their swelling kinetic profiles of the corresponding dried xerogels soaked in water at 30°C.
Effect of irradiation dose (0–100 kGy) applied to the water-swollen hydrogels on their swelling kinetic profiles of the corresponding dried xerogels soaked in water at 30°C.

Fig. 9

Plots of thermomechanical dissipation factor tan δ against temperature in DMA measured for poly(HEMA) hydrogels EB irradiated at 5–100 kGy. Measurement parameters: 1 Hz frequency and 15 μm amplitude in the temperature interval from 30°C to 180°C.
Plots of thermomechanical dissipation factor tan δ against temperature in DMA measured for poly(HEMA) hydrogels EB irradiated at 5–100 kGy. Measurement parameters: 1 Hz frequency and 15 μm amplitude in the temperature interval from 30°C to 180°C.

Fig. 10

Effect of EB dose on the visible absorption spectrum of poly(HEMA)-AuNPs composite disks (1 mm-thick, soaked in 1 mM Au(III)).
Effect of EB dose on the visible absorption spectrum of poly(HEMA)-AuNPs composite disks (1 mm-thick, soaked in 1 mM Au(III)).

Fig. 11

Radiolytic formation of AuNPs within poly(HEMA) matrix upon EB irradiation of 1 mM, 0.5 mM, and 0.1 mM Au(III) loaded hydrogels at 5 kGy. Inset: Absorbance as a function of Au(III) concentration.
Radiolytic formation of AuNPs within poly(HEMA) matrix upon EB irradiation of 1 mM, 0.5 mM, and 0.1 mM Au(III) loaded hydrogels at 5 kGy. Inset: Absorbance as a function of Au(III) concentration.

Fig. 12

Radiolytic formation of AuNPs within poly(HEMA) matrix upon EB irradiation of 1 mM Au(III) loaded hydrogels at 5 kGy with various EGDMA content.
Radiolytic formation of AuNPs within poly(HEMA) matrix upon EB irradiation of 1 mM Au(III) loaded hydrogels at 5 kGy with various EGDMA content.

Fig. 13

Formation of AuNPs in a limited area exposed to EB of 5 kGy within poly(HEMA) disks (a) swollen in 1 mM Au(III) before irradiation and (b) post-swollen in 1 mM Au(III).
Formation of AuNPs in a limited area exposed to EB of 5 kGy within poly(HEMA) disks (a) swollen in 1 mM Au(III) before irradiation and (b) post-swollen in 1 mM Au(III).

Fig. 14

Poly(HEMA-co-MADQUAT) hydrogels synthesized by UV irradiation (254 nm, irradiance 2.6 mW·cm−2, exposure dose 8 J·cm−2) of a solution composed of 50 vol.% of aqueous 30% hydrogen peroxide, 47.5 vol.% of HEMA/EGDMA (99/1) and 2.5 vol.% of aqueous 75% MADQUAT, (a) non-irradiated and (b) irradiated by EB at various doses after having been soaked in 1 mM Au(III) solutions of pH 2 and pH 7.
Poly(HEMA-co-MADQUAT) hydrogels synthesized by UV irradiation (254 nm, irradiance 2.6 mW·cm−2, exposure dose 8 J·cm−2) of a solution composed of 50 vol.% of aqueous 30% hydrogen peroxide, 47.5 vol.% of HEMA/EGDMA (99/1) and 2.5 vol.% of aqueous 75% MADQUAT, (a) non-irradiated and (b) irradiated by EB at various doses after having been soaked in 1 mM Au(III) solutions of pH 2 and pH 7.

Gelation dose (Dg) and probability ratio of chain breakage to cross-linking (p0/q0) for hydrogels based on HEMA/EGDMA with the addition of a different amount of H2O2 (30% aqueous solution) synthesized by UV irradiation (254 nm, irradiance 2_6 mW·cm−2)

Sample make-upHEMA/EGDMA (99/1): 50 vol.% 30% H2O2: 50 vol.%HEMA/EGDMA (99/1): 67 vol.% 30% H2O2: 33 vol.%HEMA/EGDMA (99/1): 75 vol.% 30% H2O2: 25 vol.%HEMA/EGDMA (99/1): 80 vol.% 30% H2O2: 20 vol.%
Sample compositionmethacrylate functions 4.123 mol·L−1 H2O2 4.895 mol·L−1methacrylate functions 5.497 mol·L−1 H2O2 3.263 mol·L−1methacrylate functions 6.184 mol·L−1 H2O2 2.448 mol·L−1methacrylate functions 6.596 mol·L−1 H2O2 1.958 mol·L−1
Dg (J·cm−2)2.332.552.923.55
p0/q00000.25

Gel fractions for hydrogels based on HEMA/EGDMA/H2O2 (30% aqueous solution) with various amounts of N-isopropylacrylamide, synthesized by UV irradiation (254 nm, irradiance 2_6 mW·cm−2, total exposure dose 8 J·cm−2)

Sample make-upHEMA/EGDMA (99/1): 50 vol.% 30% H2O2: 50 vol.%HEMA/EGDMA (99/1): 48.75 vol.% NIPAm: 1.25 wt% 30% H2O2: 50 vol.%HEMA/EGDMA (99/1): 47.5 vol.% NIPAm: 2.5 wt% 30% H2O2: 50 vol.%HEMA/EGDMA (99/1): 45 vol.% NIPAm: 5 wt% 30% H2O2: 50 vol.%
Sample compositionmethacrylate functions 4.123 mol·L−1 H2O2 4.895 mol·L−1methacrylate functions 4.020 mol·L−1 NIPAm 0.110 mol·L−1 H2O2 4.895 mol·L−1methacrylate functions 3.917 mol·L−1 NIPAm 0.221 mol·L−1 H2O2 4.895 mol·L−1methacrylate functions 3.710 mol·L−1 NIPAm 0.442 mol·L−1 H2O2 4.895 mol·L−1
Gel fraction (%)82.075.870.365.7

Gel fractions for hydrogels based on HEMA/EGDMA/H2O2 (30% aqueous solution) with various amounts of AA, synthesized by UV irradiation (254 nm, irradiance 2_6 mW·cm−2, total exposure dose 8 J·cm−2)

Sample make-upHEMA/EGDMA (99/1): 50 vol.% 30% H2O2: 50 vol.%HEMA/EGDMA (99/1): 48.75 vol.% AA: 1.25 vol.% 30% H2O2: 50 vol.%HEMA/EGDMA (99/1): 47.5 vol.% AA: 2.5 vol.% 30% H2O2: 50 vol.%HEMA/EGDMA (99/1): 45 vol.% AA: 5 vol.% 30% H2O2: 50 vol.%
Sample compositionmethacrylate functions 4.123 mol·L−1 H2O2 4.895 mol·L−1methacrylate functions 4.020 mol·L−1 AA 0.182 mol·L−1 H2O2 4.895 mol·L−1methacrylate functions 3.917 mol·L−1 AA 0.364 mol·L−1 H2O2 4.895 mol·L−1methacrylate functions 3.710 mol·L−1 AA 0.729 mol·L−1 H2O2 4.895 mol·L−1
Gel fraction (%)82.092.290.988.3

Gel fractions for hydrogels based on HEMA/EGDMA/H2O2 (30% aqueous solution) with various amounts of MADQUAT (75% aqueous solution), synthesized by UV irradiation (254 nm, irradiance 2_6 mW·cm−2, total exposure dose 8 J·cm−2

Sample make-upHEMA/EGDMA (99/1): 50 vol.% 30% H2O2: 50 vol.%HEMA/EGDMA (99/1): 48.75 vol.% MADQUAT 1.25 vol.% 30% H2O2: 50 vol.%HEMA/EGDMA (99/1): 47.5 vol.% MADQUAT 2.5.% 30% H2O2: 50 vol.%HEMA/EGDMA (99/1): 45 vol.% MADQUAT 5 vol.% 30% H2O2: 50 vol.%
Sample compositionmethacrylate functions 4.123 mol·L−1 H2O2 4.895 mol·L−1methacrylate functions 4.020 mol·L−1 MADQUAT 0.049 mol·L−1 H2O2 4.895 mol·L−1methacrylate functions 3.917 mol·L−1 MADQUAT 0.097 mol·L−1 H2O2 4.895 mol·L−1methacrylate functions 3.710 mol·L−1 MADQUAT 0.194 mol·L−1 H2O2 4.895 mol·L−1
Gel fraction (%)82.075.165.350.9
DOI: https://doi.org/10.2478/nuka-2021-0025 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 165 - 177
Submitted on: Jan 19, 2021
Accepted on: Feb 22, 2021
Published on: Nov 25, 2021
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Katsiaryna Dziarabina, Uliana Pinaeva, Sławomir Kadłubowski, Piotr Ulański, Xavier Coqueret, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.