NEA/OECD. (2016). Benchmark for neutronic analysis of sodium-cooled fast reactor cores with various fuel types and core sizes. OECD Nuclear Energy Agency. Available from https://www.oecdnea.org/upload/docs/application/pdf/2020-01/nscr2015-9.pdf.
OECD/NEA. (2014). Technology roadmap update for Generation IV nuclear energy systems. OECD Nuclear Energy Agency. Available from https://www.gen-4.org/gif/upload/docs/application/pdf/2014-03/gif-tru2014.pdf.
Ogawa, M. (2016). Proposals of new basic concepts on safety and radioactive waste and of new High Temperature Gas-cooled Reactor based on these basic concepts. Nucl. Eng. Des., 308, 133–141. https://doi.org/10.1016/j.nucengdes.2016.08.028.
El-Emam, R. S., Dincer, I., & Zamfirescu, C. (2019). Enhanced CANDU reactor with heat upgrade for combined power and hydrogen production. Int. J. Hydrog. Energy, 44, 23580–23588. https://doi.org/10.1016/j.ijhydene.2019.06.181.
Yoo, J., Chang, J., Lim, J. -Y., Cheon, J. -S., Lee, T.-H., Kim, S. K., Lee, K. L., & Joo, H. -K. (2016). Overall system description and safety characteristics of Prototype Gen IV sodium cooled fast reactor in Korea. Nucl. Eng. Technol., 48, 1059–1070. https://doi.org/10.1016/j.net.2016.08.004.
Rachkov, V., & Ashurko, Y. (2010). Review of SFR safety related operational experience. In First Joint IAEA–GIF Workshop on Operational and Safety Aspects of Sodium Cooled Fast Reactors, 23–25 May 2010, Vienna, Austria. Available from IAEA INIS database, https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/104/49104075.pdf?r=1.
Aoto, K., Dufour, P., Hongyi, Y., Glatz, J. P., Kim, Y., Ashurko, Y., Hill, R., & Uto, N. (2014). A summary of sodium-cooled fast reactor development. Prog. Nucl. Energy, 77, 247–265. https://doi.org/http://dx.doi.org/10.1016/j.pnucene.2014.05.008.
Chetal, S. C., & Chellapandi, P. (2013). Indian fast reactor technology: Current status and future programme. Sadhana, 38(5), 795–815. https://doi.org/10.1007/s12046-013-0167-8.
Puthiyavinayagam, P., Selvaraj, P., Balasubramaniyan, V., Raghupathy, S., Velusamy, K., Devan, K., Nashine, B. K., Padma Kumar, G., Suresh kumar, K. V., Varatharajan, S., Mohanakrishnan, P., Srinivasan, G., & Bhaduri, A. K. (2017). Development of fast breeder reactor technology in India. Prog. Nucl. Energy, 101, 19–42. https://doi.org/10.1016/j.pnucene.2017.03.015.
Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press.
Goldberg, D. E. (1979). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Publishing Company, Inc. https://www.gbv.de/dms/ilmenau/toc/01600020X.PDF.
Israeli, E., & Gilad, E. (2017). Novel genetic algorithms for loading pattern optimization using state-of-the-art operators and a simple test case. J. Nucl. Eng. Radiat. Sci., 3, 1–10. https://doi.org/10.1115/1.4035883.
Hill, T. (2014). Pressurised water reactor in-core fuel management by tabu search. Ann. Nucl. Energy, 75, 64–71. https://www.repository.cam.ac.uk/bitstream/handle/1810/245632/Tasha-Hill-revised-paper.pdf?sequence=1.
Pereira, C. M. N. A., Schirru, R., & Martinez, A. S. (2000). Genetic algorithms applied to nuclear reactor design optimization. In Da Ruan (Ed.), Fuzzy systems and soft computing in nuclear engineering (pp. 315–334). Springer. https://doi.org/10.1007/9783-7908-1866-6_14.
Martín Del Campo, C., François, J. L., & López, H. A. (2001). AXIAL: A system for boiling water reactor fuel assembly axial optimization using genetic algorithms. Ann. Nucl. Energy, 28(16), 1667–1682. https://doi.org/10.1016/S0306-4549(01)00002-0.
Martín-del-Campo, C., Palomera-Pérez, M. Á., & François, J. L. (2009). Advanced and flexible genetic algorithms for BWR fuel loading pattern optimization. Ann. Nucl. Energy, 36(10), 1553–1559. https://doi.org/10.1016/j.anucene.2009.07.013.
Ortiz, J. J., & Requena, I. (2004). An order coding genetic algorithm to optimize fuel reloads in a nuclear boiling water reactor. Nucl. Sci. Eng., 146(1), 88–98. https://doi.org/10.13182/NSE04-A2395.
Leppänen, J. (2015, June 18). Serpent – a continuous-energy Monte Carlo reactor physics burnup calculation code – User’s manual. Available from http://montecarlo.vtt.fi/download/Serpent_manual.pdf.
Leppänen, J., Pusa, M., Viitanen, T., Valtavirta, V., & Kaltiaisenaho, T. (2015). The Serpent Monte Carlo code: Status, development and applications in 2013. Ann. Nucl. Energy, 82, 142–150. https://doi.org/10.1016/j.anucene.2014.08.024.
Beck, T., Blanc, V., Chapoutier, N., Escleine, J., Gauthier, L., Haubensack, D., Occhipinti, D., Pelletier, M., Phelip, M., Perrin, B., & Venard, C. (2020). Conceptual design of fuel and radial shielding sub-assemblies for ASTRID. HAL Id: cea-02435081. Available from https://hal.archives-ouvertes.frcea-02435081.
Venard, C., Coquelet, C., Conti, A., Gentet, D., Lamagnere, P., Lavastre, R., Gauthe, P., Bernardin, B., Beck, T., Lorenzo, D., Scholer, Ac., & Vernier, D. (2019). The astrid core at the end of the conceptual design phase. HAL Id: hal-02419651.
Guo, H., & Buiron, L. (2018). Innovative sodium fast reactors control rod design. HAL Id: hal-01907183. Available from https://hal.archives-ouvertes.fr/hal01907183.