Have a personal or library account? Click to login
Natural zeolite as a replacement for resin in the cation exchange process of cesium on post-irradiated nuclear fuel Cover

Natural zeolite as a replacement for resin in the cation exchange process of cesium on post-irradiated nuclear fuel

Open Access
|Mar 2021

References

  1. ASTM. (2014). Standard practice for the ion exchange separation of uranium and plutonium prior to isotopic analysis. (ASTM C-1411).
  2. Wiyantoko, B., & Rahman, N. (2017). Measurement of cation exchange capacity (CEC) on natural zeolite by percolation method. AIP Conf. Proc., 1911, 020021. https://doi.org/10.1063/1.5016014.
  3. Ilić, B., & Wettstein, S. (2017). A review of adsorbate and temperature-induced zeolite framework flexibility. Microporous Mesoporous Mat., 239, 221–234. https://doi.org/10.1016/j.micromeso.2016.10.005.
  4. Kong, M., Liu, Z., Vogt, T., & Lee, Y. (2016). Chabazite structures with Li, Na, Ag, K, NH4, Rb and Cs as extra-framework cations. Microporous Mesoporous Mat., 221, 253–263. https://doi.org/10.1016/j.micromeso.2015.09.031.
  5. Sing, D. N., & Kolay, P. K. (2002). Simulation of ash-water interaction and its influence on ash characteristics. Prog. Energy Cumbust. Sci., 28, 267–299.
  6. Dyer, A., Harjula, R., Newton, J., & Pilinger, M. (2010). Synthesis and characterisation of mesoporous silica phases containing heteroatoms, and their cation exchange properties. Part 5: Cation exchange isotherms, and the measurement of radioisotope distribution coefficients, for an MCM-22 phase containing aluminium. Microporous Mesoporous Mat., 135(1/3), 21–29. https://doi.org/10.1016/j.micromeso.2010.06.006.
  7. Pepe, F., de Gennaro, B., Aprea, P., & Caputo, D. (2013). Natural zeolites for heavy metals removal from aqueous solutions: Modeling of the fixed bed Ba2+/Na+ ion-exchange process using a mixed phillipsite/chabazite-rich tuff. J. Chem. Eng., 219, 37–42. https://doi.org/10.1016/j.cej.2012.12.075.
  8. Ginting, A. Br., & Anggraini, D. (2012). The effect of zeolite addition on the of 137Cs in irradiated U3Si2-Al fuel element plate. Journal Teknol. Bahan Nuklir, 7(2), 123–135.
  9. Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J., 156, 11–24. https://doi.org/10.1016/j.cej.2009.10.029.
  10. Estiaty, L. M. (2010). Engineering of zeolite mineral with wet impregnation inhibitor metal method as raw material of antiseptic by continous flow method. Jurnal Zeolit Indonesia, 9(2), 6–70. (in Indonesian).
  11. Johan, E., Yamada, T., Wazingwa Munthali, M., Kabwadza-Corner, P., Aono, H., & Matsue, N. (2015). Natural zeolites as potential materials for decontamination of radioactive cesium. Procedia Environ. Sci., 28, 52–56.
  12. Zhang, J., Singh, R., & Webley, P. A. (2008). Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mat., 111(1/3), 478–487. DOI:10.1016/j.micromeso.2007.08.022.
  13. Borai, E. H., Harjula, R., Malinen, L., & Paajanen, A. (2009). Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J. Hazard. Mater., 172(1), 416–422. https://doi.org/10.1016/j.jhazmat.2009.07.033.
  14. Vipin, A. K., Ling, S., & Fugetsu, B. (2016). Removal of Cs+ and Sr2+ from water using MWCNT reinforced Zeolite-A beads. Microporous Mesoporous Mat., 224, 84–88. https://doi.org/10.1016/j.micromeso.2015.11.024.
  15. Cortés-Martínez, R., Olguín, M. T., & Solache-Ríos, M. (2010). Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems. Desalination, 258(1/3), 164–170. https://doi.org/10.1016/j.desal.2010.03.019.
  16. El-Kamash, A. M. (2008). Evaluation of zeolite for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. J. Hazard. Mater., 151(2/3), 432–445. https://doi.org/10.1016/j.jhazmat.2007.06.009.
  17. Chegrouche, S., Mellah, A., & Barkat, M. (2009). Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination, 235(1/3), 306–318. DOI:10.1016/j.desal.2008.01.018.
  18. Abdel Moamen, O. A., Ismail, I. M., Abdelmonem, N., & Abdel Rahman, R. O. (2015). Factorial design analysis for optimizing the removal of cesium and strontium ions on synthetic nano-sized zeolite. Journal Taiwan Inst. Chem. Eng., 55, 133–144. https://doi.org/10.1016/j.jtice.2015.04.007.
  19. Inglezakis, V. J. (2005). The concept of “capacity” in zeolite ion-exchange systems. J. Colloid Interface Sci., 281, 68–79. DOI:10.1016/j.jcis.2004.08.082.
  20. Sukor, A., Azira, A. Z. A., & Husni, M. H. A. (2017). Determination of cation exchange capacity of natural zeolite: A revisit. Malaysian Journal of Soil Science, 21, 105–112. http://www.msss.com.my/.
  21. Siti, A., Anggraini, D., Nampira, Y., Rosika, R., Noviarti, N., & Nugroho, A. (2003). Selectivity of Lampung zeolite towards matrices cations generated from uranium fission. Jurnal Zeolit Indonesia, 2(1), 9–14. (in Indonesian).
DOI: https://doi.org/10.2478/nuka-2021-0002 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 11 - 19
Submitted on: May 4, 2020
|
Accepted on: Oct 2, 2020
|
Published on: Mar 6, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Aslina Br. Ginting, Amini Siti, Noviarty, Yanlinastuti, Arif Nugroho, Boybul, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.