Have a personal or library account? Click to login
Cost-effective approach to lung cancer risk for a radiological dispersal device (RDD) scenario Cover

Cost-effective approach to lung cancer risk for a radiological dispersal device (RDD) scenario

Open Access
|Dec 2019

References

  1. 1. Maillie, H. D., & Jacobson, A. P. (1992). A graphical method of estimating fatal radiation-induced cancers using the BEIR V method. Health Phys., 63(3), 273–280.10.1097/00004032-199209000-000021644563
  2. 2. Maillie, H. D., Simon, W., Watts, R. J., & Quinn, B. R. (1993). Determining person-years of life lost using the BEIR V method. Health Phys., 64(5), 461–466.10.1097/00004032-199305000-000018491595
  3. 3. Rother, F. C., Rebello, W. F., Healy, M. J., Silva, M. M., Cabral, P. A., Vital, H. C., & Andrade, E. R. (2016). Radiological risk assessment by convergence methodology model in RDD scenarios. Risk Anal., 36(11), 2039–2046. DOI: 10.1111/risa.12557.10.1111/risa.1255726895431
  4. 4. Andrade, C. P. S., Souza, C. J., Camerini, E. S. N., Alves, I. S., Vital, H. C., Healy, M. J. F., & Andrade, E. R. (2018). Support to triage and public risk perception considering long-term response to a Cs-137 radiological dispersive device scenario. Toxicol. Ind. Health, 34(6), 433–438. https://doi.org/10.1177/0748233718762920.10.1177/074823371876292029665768
  5. 5. Purves, M., & Parkes, D. (2016). Validation of the DIFFAL, HPAC and HotSpot dispersion models using the Full-Scale Radiological Dispersal Device (FSRDD) field trials witness plate deposition dataset. Health Phys., 110(5), 481–490.10.1097/HP.000000000000046327023035
  6. 6. Thomson, W. H., & Roberts, P. J. (1986). Cost-benefit analysis in radiation protection. Nucl. Med. Commun., 7(12), 855–856.10.1097/00006231-198612000-00001
  7. 7. Weatherburn, H. (1984). A realistic approach to cost-benefit analysis in radiation protection. Br. J. Radiol., 57(681), 847–848. https://doi.org/10.1259/0007-1285-57-681-847.10.1259/0007-1285-57-681-8476434015
  8. 8. International Commission on Radiological Protection. (1983). Cost-benefit analysis in the optimization of radiation protection. Ann. ICRP, 10(2/3). (ICRP Publication 37).
  9. 9. Homann, S. G. (2013). HotSpot Health Physics Codes Version 3.0 User’s Guide. Lawrence Livermore National Laboratory, CA, USA.
  10. 10. Harper, F. T., Musolino, S. V., & Wente, W. B. (2007). Realistic radiological dispersal device hazard boundaries and ramifications for early consequence management decisions. Health Phys., 93(1), 1–16.10.1097/01.HP.0000264935.29396.6f17563488
  11. 11. International Atomic Energy Agency. (1996). Methods for estimating the probability of cancer from occupational radiation exposure. Vienna: IAEA. (IAEATECDOC-870).
  12. 12. Preston, D. L., Ron, E., Tokuoka, S., Funamoto, S., Nishi, N., Soda, M., Mabuchi, K., & Kodama, K. (2007). Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res., 168(1), 1–64. https://doi.org/10.1667/RR0763.1.10.1667/RR0763.117722996
  13. 13. Lee, W. C. (2014). Excess relative risk as an effect measure in case-control studies of rare diseases. PLoS One, 10(4), e0121141. https://doi.org/10.1371/journal.pone.0121141.10.1371/journal.pone.0121141441263925919483
  14. 14. Darby, S. C., Doll, R., Gill, S. K., & Smith, P. G. (1987). Long term mortality after a single treatment course with X-rays in patients treated for ankylosing spondylitis. Br. J. Cancer, 55(2), 179–190. https://doi.org/10.1038/bjc.1987.35.10.1038/bjc.1987.35
  15. 15. Narendran, N., Luzhna, L., & Kovalchuk, O. (2019). Sex difference of radiation response in occupational and accidental exposure. Front. Genet., 10, 260. https://doi.org/10.3389/fgene.2019.00260.10.3389/fgene.2019.00260
  16. 16. International Commission on Radiological Protection. (2007). The 2007 Recommendations of the International Commission on Radiological Protection. Ann. ICRP, 37(2/4), 1–332. (ICRP Publication 103).
  17. 17. International Commission on Radiological Protection. (1989). Optimization and decision-making in radiological protection. A report of a Task Group of Committee 4 of the International Commission on Radiological Protection. Ann. ICRP, 20(1), 1–60.
  18. 18. International Commission on Radiological Protection. (1973). Implications of Commission recommendations that doses be kept as low as readily achievable. (ICRP Publication 22). Oxford: Pergamon Press.
  19. 19. Dillon, M., Kane, J., Nasstrom, J., Homann, S., & Pobanz, B. (2016). Summary of building protection factor studies for external exposure to ionizing radiation. Lawrence Livermore National Laboratory, CA, USA. (LLNL-TR-684121).10.2172/1256433
  20. 20. Mettler, F. A. Jr. (2005). Medical resources and requirements for responding to radiological terrorism. Health Phys., 89(5), 488–493.10.1097/01.HP.0000172143.37040.bd
  21. 21. Conklin, C., & Edwards, J. (2000). Selection of protective action guides for nuclear incidents. J. Hazard. Mater., 75(2/3), 131–144. https://doi.org/10.1016/S0304-3894(00)00176-X.10.1016/S0304-3894(00)00176-X
  22. 22. Sorensen, J. H., Shumpert, B. L., & Vogt, B. M. (2004). Planning for protective action decision making: evacuate or shelter-in-place. J. Hazard. Mater., 109(1/3), 1–11. https://doi.org/10.1016/j.jhazmat.2004.03.004.10.1016/j.jhazmat.2004.03.00415177740
DOI: https://doi.org/10.2478/nuka-2019-0016 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 123 - 129
Submitted on: Nov 10, 2018
Accepted on: Sep 4, 2019
Published on: Dec 11, 2019
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Karolina P. S. Costa, Sergio X. Lima, Tercio Brum, Zelmo R. Lima, Jose C. C. Amorim, Matthew J. F. Healy, Helio C. Vital, Matjaž Prah, Edson R. Andrade, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.