Have a personal or library account? Click to login
Sharing, commenting, and reacting to Danish misinformation: A case study of cognitive attraction on Facebook Cover

Sharing, commenting, and reacting to Danish misinformation: A case study of cognitive attraction on Facebook

Open Access
|Apr 2025

References

  1. Abu Arqoub, O., Elega, A. A., Efe Özad, B., Dwikat, H., & Oloyede, F. A. (2020). Mapping the scholarship of fake news research: A systematic review. Journalism Practice, 16(1), 56–86. https://doi.org/10.1080/17512786.2020.1805791
  2. Acerbi, A. (2016). A cultural evolution approach to digital media. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00636
  3. Acerbi, A. (2019). Cognitive attraction and online misinformation. Palgrave Communications, 5(1), 15. https://doi.org/10.1057/s41599-019-0224-y
  4. Acerbi, A. (2021). From storytelling to Facebook: Content biases when retelling or sharing a story [Preprint]. Open Science Framework. https://doi.org/10.31219/osf.io/br56y
  5. Altay, S., Hacquin, A.-S., & Mercier, H. (2022). Why do so few people share fake news? It hurts their reputation. New Media & Society, 24(6), 1303–1324. https://doi.org/10.1177/1461444820969893
  6. Apenteng, B. A., Ekpo, I. B., Mutiso, F. M., Akowuah, E. A., & Opoku, S. T. (2020). Examining the relationship between social media engagement and hospital revenue. Health Marketing Quarterly, 37(1), 10–21. https://doi.org/10.1080/07359683.2020.1713575
  7. Bak, P. de P., Walter, J. G., & Bechmann, A. (2022). Digital false information at scale in the European Union: Current state of research in various disciplines, and future directions. New Media & Society, 25(10), 2800–2819. https://doi.org/10.1177/14614448221122146
  8. Bebbington, K., MacLeod, C., Ellison, T. M., & Fay, N. (2017). The sky is falling: Evidence of a negativity bias in the social transmission of information. Evolution and Human Behavior, 38(1), 92–101. https://doi.org/10.1016/j.evolhumbehav.2016.07.004
  9. Berger, J., & Milkman, K. L. (2010). Social transmission, emotion, and the virality of online content [Marketing Science Institute Working Paper Series 2010, Report No. 10-114]. https://thearf-org-unified-admin.s3.amazonaws.com/MSI/2020/06/MSI_Report_10-114.pdf
  10. Berriche, M., & Altay, S. (2020). Internet users engage more with phatic posts than with health misinformation on Facebook. Palgrave Communications, 6(1), Article 71. https://doi.org/10.1057/s41599-020-0452-1
  11. Blaine, T., & Boyer, P. (2018). Origins of sinister rumors: A preference for threat-related material in the supply and demand of information. Evolution and Human Behavior, 39(1), 67–75. https://doi.org/10.1016/j.evolhumbehav.2017.10.001
  12. Boyer, P., & Parren, N. (2015). Threat-related information suggests competence: A possible factor in the spread of rumors. PLOS ONE, 10(6), e0128421. https://doi.org/10.1371/journal.pone.0128421
  13. Brady, W. J., Gantman, A. P., & Van Bavel, J. J. (2020). Attentional capture helps explain why moral and emotional content go viral. Journal of Experimental Psychology: General, 149(4), 746–756. https://doi.org/10.1037/xge0000673
  14. Bruni, L., Francalanci, C., & Giacomazzi, P. (2012). The role of multimedia content in determining the virality of social media information. Information, 3(3), 278–289. https://doi.org/10.3390/info3030278
  15. Bucher, T., & Helmond, A. (2018). The affordances of social media platforms. In The SAGE handbook of social media. Sage. https://doi.org/10.4135/9781473984066
  16. Bürkner, P.-C. (2017). brms: An R package for bayesian multilevel models using Stan. Journal of Statistical Software, 80(1). https://doi.org/10.18637/jss.v080.i01
  17. De León, E., & Trilling, D. (2021). A sadness bias in political news sharing? The role of discrete emotions in the engagement and dissemination of political news on Facebook. Social Media + Society, 7(4), 205630512110597. https://doi.org/10.1177/20563051211059710
  18. de Oliveira, D. V. B., & Albuquerque, U. P. (2021). Cultural evolution and digital media: Diffusion of fake news about COVID-19 on Twitter. SN Computer Science, 2(6), 430. https://doi.org/10.1007/s42979-021-00836-w
  19. Derczynski, L., Albert-Lindqvist, T. O., Bendsen, M. V., Inie, N., Pedersen, V. D., & Pedersen, J. E. (2019, October 31). Misinformation on Twitter during the Danish national election: A case study. Proceedings of the Conference for Truth and Trust Online 2019. https://doi.org/10.36370/tto.2019.16
  20. DR Analyse. (2024). Medieudviklingen 2023. Danmarks Radio (DR). https://tinyurl.com/34zwmy44
  21. Dunbar, R. I. M. (2004). Gossip in evolutionary perspective. Review of General Psychology, 8(2), 100–110. https://doi.org/10.1037/1089-2680.8.2.100
  22. Dunbar, R. I. M. (2009). The social brain hypothesis and its implications for social evolution. Annals of Human Biology, 36(5), 562–572. https://doi.org/10.1080/03014460902960289
  23. Ferrara, E., & Yang, Z. (2015). Quantifying the effect of sentiment on information diffusion in social media. PeerJ Computer Science, 1, e26. https://doi.org/10.7717/peerj-cs.26
  24. Fine, J. A., & Hunt, M. F. (2023). Negativity and elite message diffusion on social media. Political Behavior, 45(3), 955–973. https://doi.org/10.1007/s11109-021-09740-8
  25. Funke, D. (2020). PolitiFact | fact-checking ‘Plandemic’: A documentary full of false conspiracy theories about the coronavirus. https://www.politifact.com/article/2020/may/08/fact-checking-plandemic-documentary-full-false-con/
  26. Gabry, J., & Mahr, T. (2022). bayesplot: Plotting for bayesian models. https://mc-stan.org/bayesplot/
  27. Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for bayesian regression models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100
  28. Goodrich, K. (2011). Anarchy of effects? Exploring attention to online advertising and multiple outcomes. Psychology & Marketing, 28(4), 417–440. https://doi.org/10.1002/mar.20371
  29. Greene, W. H. (2003). Econometric analysis (5th ed). Prentice Hall.
  30. Gross, J., & Von Wangenheim, F. (2022). Influencer marketing on Instagram: Empirical research on social media engagement with sponsored posts. Journal of Interactive Advertising, 22(3), 289–310. https://doi.org/10.1080/15252019.2022.2123724
  31. Hartig, F. (2024). Installing, loading and citing the package [Computer software]. https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html
  32. Hewstone, M., Rubin, M., & Willis, H. (2002). Intergroup bias. Annual Review of Psychology, 53(1), 575–604. https://doi.org/10.1146/annurev.psych.53.100901.135109
  33. Hilbe, J. M. (2011). Negative binomial regression (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511973420
  34. Kendal, R. L., Boogert, N. J., Rendell, L., Laland, K. N., Webster, M., & Jones, P. L. (2018). Social learning strategies: Bridge-building between fields. Trends in Cognitive Sciences, 22(7), 651–665. https://doi.org/10.1016/j.tics.2018.04.003
  35. King, K. K., & Wang, B. (2023). Diffusion of real versus misinformation during a crisis event: A big data-driven approach. International Journal of Information Management, 71, 102390. https://doi.org/10.1016/j.ijinfomgt.2021.102390
  36. Li, Y., & Xie, Y. (2020). Is a picture worth a thousand words? An empirical study of image content and social media engagement – Yiyi Li, Ying Xie, 2020. Journal of Marketing Research. https://journals.sagepub.com/doi/full/10.1177/0022243719881113?utm_source=chatgpt.com
  37. López-García, X., Costa-Sánchez, C., & Vizoso, Á. (2021). Journalistic fact-checking of information in pandemic: Stakeholders, hoaxes, and strategies to fight disinformation during the Covid-19 crisis in Spain. International Journal of Environmental Research and Public Health, 18(3), 1227. https://doi.org/10.3390/ijerph18031227
  38. Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P., & Makowski, D. (2021). performance: An R Package for Assessment, Comparison and Testing of Statistical Models. Journal of Open Source Software, 6(60), 3139. https://doi.org/10.21105/joss.03139
  39. Luo, H., Meng, X., Zhao, Y., & Cai, M. (2023). Exploring the impact of sentiment on multi-dimensional information dissemination using COVID-19 data in China. Computers in Human Behavior, 144, 107733. https://doi.org/10.1016/j.chb.2023.107733
  40. Lyons, A., & Kashima, Y. (2001). The reproduction of culture: Communication processes tend to maintain cultural stereotypes. Social Cognition, 19(3), 372–394. https://doi.org/10.1521/soco.19.3.372.21470
  41. Martin, D., Cunningham, S. J., Hutchison, J., Slessor, G., & Smith, K. (2017). How societal stereotypes might form and evolve via cumulative cultural evolution. Social and Personality Psychology Compass, 11(9), e12338. https://doi.org/10.1111/spc3.12338
  42. Marwick, A. E., & boyd, d. (2011). I tweet honestly, I tweet passionately: Twitter users, context collapse, and the imagined audience. New Media & Society, 13(1), 114–133. https://doi.org/10.1177/1461444810365313
  43. McGuigan, N., & Cubillo, M. (2013). Information transmission in young children: When social information is more important than nonsocial information. The Journal of Genetic Psychology, 174(6), 605–619. https://doi.org/10.1080/00221325.2012.749833
  44. Mesoudi, A., Whiten, A., & Dunbar, R. (2006). A bias for social information in human cultural transmission. British Journal of Psychology, 97(3), 405–423. https://doi.org/10.1348/000712605X85871
  45. Metzler, H., & Garcia, D. (2022). Social drivers and algorithmic mechanisms on digital media [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/cxa9u
  46. Metzler, H., & Garcia, D. (2023). Social drivers and algorithmic mechanisms on digital media. Perspectives on Psychological Science, 19(5), 735–748. https://doi.org/10.1177/17456916231185057
  47. Morin, O., & Acerbi, A. (2017). Birth of the cool: A two-centuries decline in emotional expression in Anglophone fiction. Cognition and Emotion, 31(8), 1663–1675. https://doi.org/10.1080/02699931.2016.1260528
  48. Mousavi, M., Davulcu, H., Ahmadi, M., Axelrod, R., Davis, R., & Atran, S. (2022). Effective messaging on social media: What makes online content go viral? Proceedings of the ACM Web Conference 2022, 2957–2966. https://doi.org/10.1145/3485447.3512016
  49. Nairne, J. S., Thompson, S. R., & Pandeirada, J. N. S. (2007). Adaptive memory: Survival processing enhances retention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(2), 263–273. https://doi.org/10.1037/0278-7393.33.2.263
  50. Newman, N., Fletcher, R., Robertson, C. T., Ross Arguedas, A., & Nielsen, R. K. (2024). Reuters Institute digital news report 2024. Reuters Institute for the Study of Journalism, University of Oxford. https://doi.org/10.60625/RISJ-VY6N-4V57
  51. Nissen, I. A., Walter, J. G., Charquero-Ballester, M., & Bechmann, A. (2022). Digital infrastructures of COVID-19 misinformation: A new conceptual and analytical perspective on fact-checking. Digital Journalism, 10(5), 738–760. https://doi.org/10.1080/21670811.2022.2026795
  52. OSF. (2023, October 16). Sharing, commenting and reacting to Danish Misinformation: A Case Study of Cognitive Attraction on Facebook [Project]. https://osf.io/dqrky/?view_only=6680bf5c343344f48ead45fe7314af0e
  53. Pieters, R., & Wedel, M. (2004). Attention capture and transfer in advertising: Brand, pictorial, and text-size effects. Journal of Marketing, 68(2), 36–50. https://doi.org/10.1509/jmkg.68.2.36.27794
  54. R Core Team. (2023). R: A language and environment for statistical computing. https://www.R-project.org/
  55. Rathje, S., Robertson, C., Brady, W. J., & Van Bavel, J. J. (2024). People think that social media platforms do (but should not) amplify divisive content. Perspectives on Psychological Science, 19(5), 781–795. https://doi.org/10.1177/17456916231190392
  56. Rozin, P., & Royzman, E. B. (2001). Negativity bias, negativity dominance, and contagion. Personality and Social Psychology Review, 5(4), 296–320. https://doi.org/10.1207/S15327957PSPR0504_2
  57. Scheffer, M., van de Leemput, I., Weinans, E., & Bollen, J. (2021). The rise and fall of rationality in language. Proceedings of the National Academy of Sciences, 118(51), e2107848118. https://doi.org/10.1073/pnas.2107848118
  58. Schöne, J. P., Parkinson, B., & Goldenberg, A. (2021). Negativity spreads more than positivity on Twitter after both positive and negative political situations. Affective Science, 2(4), 379–390. https://doi.org/10.1007/s42761-021-00057-7
  59. Song, X., Petrak, J., Jiang, Y., Singh, I., Maynard, D., & Bontcheva, K. (2021). Classification aware neural topic model and its application on a new COVID-19 disinformation corpus. PLOS ONE, 16(2), e0247086. https://doi.org/10.1371/journal.pone.0247086
  60. Statista. (2023). Most popular social networks worldwide as of January 2023, ranked by number of monthly active users. https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
  61. Statista. (2024). Daily social media usage worldwide. https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/
  62. Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and information diffusion in social media—Sentiment of microblogs and sharing behavior. Journal of Management Information Systems, 29(4), 217–248. https://doi.org/10.2753/MIS0742-1222290408
  63. Stubbersfield, J. M. (2022). Content biases in three phases of cultural transmission: A review. Culture and Evolution, 19(1), 41–60. https://doi.org/10.1556/2055.2022.00024
  64. Stubbersfield, J. M. (2025). Content-based learning biases. In T. Shackelford (Ed.), Encyclopedia of religious psychology and behavior (pp. 1–16). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-38971-9_134-1
  65. Stubbersfield, J. M., Flynn, E. G., & Tehrani, J. J. (2017). Cognitive evolution and the transmission of popular narratives: A literature review and application to urban legends. Evolutionary Studies in Imaginative Culture, 1(1), 121–136. https://doi.org/10.26613/esic.1.1.20
  66. Stubbersfield, J. M., Tehrani, J. J., & Flynn, E. G. (2015). Serial killers, spiders and cybersex: Social and survival information bias in the transmission of urban legends. British Journal of Psychology, 106(2), 288–307. https://doi.org/10.1111/bjop.12073
  67. TjekDet. (2020, August 4). Arbejdsproces og etisk regelsæt [Work process and ethical code]. Tjekdet. https://www.tjekdet.dk/arbejdsproces-og-etisk-regelsaet
  68. Tsugawa, S., & Ohsaki, H. (2015). Negative messages spread rapidly and widely on social media. Proceedings of the 2015 ACM on Conference on Online Social Networks, 151–160. https://doi.org/10.1145/2817946.2817962
  69. Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146–1151. https://doi.org/10.1126/science.aap9559
  70. Warrens, M. J. (2015). Five Ways to Look at Cohen’s Kappa. Journal of Psychology & Psychotherapy, 5(4), 1000197. https://doi.org/10.4172/2161-0487.1000197
  71. WHO. (2020). Infodemic. http://www.who.int/westernpacific/health-topics/infodemic
  72. Youngblood, M., Stubbersfield, J. M., Morin, O., Glassman, R., & Acerbi, A. (2023). Negativity bias in the spread of voter fraud conspiracy theory tweets during the 2020 US election. Humanities and Social Sciences Communications, 10(1), 573. https://doi.org/10.1057/s41599-023-02106-x
DOI: https://doi.org/10.2478/nor-2025-0003 | Journal eISSN: 2001-5119 | Journal ISSN: 1403-1108
Language: English
Page range: 55 - 75
Published on: Apr 12, 2025
Published by: University of Gothenburg Nordicom
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Petra de Place Bak, Ethan Weed, published by University of Gothenburg Nordicom
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.