Abu Arqoub, O., Elega, A. A., Efe Özad, B., Dwikat, H., & Oloyede, F. A. (2020). Mapping the scholarship of fake news research: A systematic review. Journalism Practice, 16(1), 56–86. https://doi.org/10.1080/17512786.2020.1805791
Acerbi, A. (2021). From storytelling to Facebook: Content biases when retelling or sharing a story [Preprint]. Open Science Framework. https://doi.org/10.31219/osf.io/br56y
Altay, S., Hacquin, A.-S., & Mercier, H. (2022). Why do so few people share fake news? It hurts their reputation. New Media & Society, 24(6), 1303–1324. https://doi.org/10.1177/1461444820969893
Apenteng, B. A., Ekpo, I. B., Mutiso, F. M., Akowuah, E. A., & Opoku, S. T. (2020). Examining the relationship between social media engagement and hospital revenue. Health Marketing Quarterly, 37(1), 10–21. https://doi.org/10.1080/07359683.2020.1713575
Bak, P. de P., Walter, J. G., & Bechmann, A. (2022). Digital false information at scale in the European Union: Current state of research in various disciplines, and future directions. New Media & Society, 25(10), 2800–2819. https://doi.org/10.1177/14614448221122146
Bebbington, K., MacLeod, C., Ellison, T. M., & Fay, N. (2017). The sky is falling: Evidence of a negativity bias in the social transmission of information. Evolution and Human Behavior, 38(1), 92–101. https://doi.org/10.1016/j.evolhumbehav.2016.07.004
Berriche, M., & Altay, S. (2020). Internet users engage more with phatic posts than with health misinformation on Facebook. Palgrave Communications, 6(1), Article 71. https://doi.org/10.1057/s41599-020-0452-1
Blaine, T., & Boyer, P. (2018). Origins of sinister rumors: A preference for threat-related material in the supply and demand of information. Evolution and Human Behavior, 39(1), 67–75. https://doi.org/10.1016/j.evolhumbehav.2017.10.001
Boyer, P., & Parren, N. (2015). Threat-related information suggests competence: A possible factor in the spread of rumors. PLOS ONE, 10(6), e0128421. https://doi.org/10.1371/journal.pone.0128421
Brady, W. J., Gantman, A. P., & Van Bavel, J. J. (2020). Attentional capture helps explain why moral and emotional content go viral. Journal of Experimental Psychology: General, 149(4), 746–756. https://doi.org/10.1037/xge0000673
Bruni, L., Francalanci, C., & Giacomazzi, P. (2012). The role of multimedia content in determining the virality of social media information. Information, 3(3), 278–289. https://doi.org/10.3390/info3030278
Bucher, T., & Helmond, A. (2018). The affordances of social media platforms. In The SAGE handbook of social media. Sage. https://doi.org/10.4135/9781473984066
Bürkner, P.-C. (2017). brms: An R package for bayesian multilevel models using Stan. Journal of Statistical Software, 80(1). https://doi.org/10.18637/jss.v080.i01
De León, E., & Trilling, D. (2021). A sadness bias in political news sharing? The role of discrete emotions in the engagement and dissemination of political news on Facebook. Social Media + Society, 7(4), 205630512110597. https://doi.org/10.1177/20563051211059710
de Oliveira, D. V. B., & Albuquerque, U. P. (2021). Cultural evolution and digital media: Diffusion of fake news about COVID-19 on Twitter. SN Computer Science, 2(6), 430. https://doi.org/10.1007/s42979-021-00836-w
Derczynski, L., Albert-Lindqvist, T. O., Bendsen, M. V., Inie, N., Pedersen, V. D., & Pedersen, J. E. (2019, October 31). Misinformation on Twitter during the Danish national election: A case study. Proceedings of the Conference for Truth and Trust Online 2019. https://doi.org/10.36370/tto.2019.16
Dunbar, R. I. M. (2009). The social brain hypothesis and its implications for social evolution. Annals of Human Biology, 36(5), 562–572. https://doi.org/10.1080/03014460902960289
Ferrara, E., & Yang, Z. (2015). Quantifying the effect of sentiment on information diffusion in social media. PeerJ Computer Science, 1, e26. https://doi.org/10.7717/peerj-cs.26
Fine, J. A., & Hunt, M. F. (2023). Negativity and elite message diffusion on social media. Political Behavior, 45(3), 955–973. https://doi.org/10.1007/s11109-021-09740-8
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for bayesian regression models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100
Goodrich, K. (2011). Anarchy of effects? Exploring attention to online advertising and multiple outcomes. Psychology & Marketing, 28(4), 417–440. https://doi.org/10.1002/mar.20371
Gross, J., & Von Wangenheim, F. (2022). Influencer marketing on Instagram: Empirical research on social media engagement with sponsored posts. Journal of Interactive Advertising, 22(3), 289–310. https://doi.org/10.1080/15252019.2022.2123724
Kendal, R. L., Boogert, N. J., Rendell, L., Laland, K. N., Webster, M., & Jones, P. L. (2018). Social learning strategies: Bridge-building between fields. Trends in Cognitive Sciences, 22(7), 651–665. https://doi.org/10.1016/j.tics.2018.04.003
King, K. K., & Wang, B. (2023). Diffusion of real versus misinformation during a crisis event: A big data-driven approach. International Journal of Information Management, 71, 102390. https://doi.org/10.1016/j.ijinfomgt.2021.102390
López-García, X., Costa-Sánchez, C., & Vizoso, Á. (2021). Journalistic fact-checking of information in pandemic: Stakeholders, hoaxes, and strategies to fight disinformation during the Covid-19 crisis in Spain. International Journal of Environmental Research and Public Health, 18(3), 1227. https://doi.org/10.3390/ijerph18031227
Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P., & Makowski, D. (2021). performance: An R Package for Assessment, Comparison and Testing of Statistical Models. Journal of Open Source Software, 6(60), 3139. https://doi.org/10.21105/joss.03139
Luo, H., Meng, X., Zhao, Y., & Cai, M. (2023). Exploring the impact of sentiment on multi-dimensional information dissemination using COVID-19 data in China. Computers in Human Behavior, 144, 107733. https://doi.org/10.1016/j.chb.2023.107733
Lyons, A., & Kashima, Y. (2001). The reproduction of culture: Communication processes tend to maintain cultural stereotypes. Social Cognition, 19(3), 372–394. https://doi.org/10.1521/soco.19.3.372.21470
Martin, D., Cunningham, S. J., Hutchison, J., Slessor, G., & Smith, K. (2017). How societal stereotypes might form and evolve via cumulative cultural evolution. Social and Personality Psychology Compass, 11(9), e12338. https://doi.org/10.1111/spc3.12338
Marwick, A. E., & boyd, d. (2011). I tweet honestly, I tweet passionately: Twitter users, context collapse, and the imagined audience. New Media & Society, 13(1), 114–133. https://doi.org/10.1177/1461444810365313
McGuigan, N., & Cubillo, M. (2013). Information transmission in young children: When social information is more important than nonsocial information. The Journal of Genetic Psychology, 174(6), 605–619. https://doi.org/10.1080/00221325.2012.749833
Mesoudi, A., Whiten, A., & Dunbar, R. (2006). A bias for social information in human cultural transmission. British Journal of Psychology, 97(3), 405–423. https://doi.org/10.1348/000712605X85871
Metzler, H., & Garcia, D. (2022). Social drivers and algorithmic mechanisms on digital media [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/cxa9u
Metzler, H., & Garcia, D. (2023). Social drivers and algorithmic mechanisms on digital media. Perspectives on Psychological Science, 19(5), 735–748. https://doi.org/10.1177/17456916231185057
Morin, O., & Acerbi, A. (2017). Birth of the cool: A two-centuries decline in emotional expression in Anglophone fiction. Cognition and Emotion, 31(8), 1663–1675. https://doi.org/10.1080/02699931.2016.1260528
Mousavi, M., Davulcu, H., Ahmadi, M., Axelrod, R., Davis, R., & Atran, S. (2022). Effective messaging on social media: What makes online content go viral? Proceedings of the ACM Web Conference 2022, 2957–2966. https://doi.org/10.1145/3485447.3512016
Nairne, J. S., Thompson, S. R., & Pandeirada, J. N. S. (2007). Adaptive memory: Survival processing enhances retention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(2), 263–273. https://doi.org/10.1037/0278-7393.33.2.263
Newman, N., Fletcher, R., Robertson, C. T., Ross Arguedas, A., & Nielsen, R. K. (2024). Reuters Institute digital news report 2024. Reuters Institute for the Study of Journalism, University of Oxford. https://doi.org/10.60625/RISJ-VY6N-4V57
Nissen, I. A., Walter, J. G., Charquero-Ballester, M., & Bechmann, A. (2022). Digital infrastructures of COVID-19 misinformation: A new conceptual and analytical perspective on fact-checking. Digital Journalism, 10(5), 738–760. https://doi.org/10.1080/21670811.2022.2026795
Pieters, R., & Wedel, M. (2004). Attention capture and transfer in advertising: Brand, pictorial, and text-size effects. Journal of Marketing, 68(2), 36–50. https://doi.org/10.1509/jmkg.68.2.36.27794
Rathje, S., Robertson, C., Brady, W. J., & Van Bavel, J. J. (2024). People think that social media platforms do (but should not) amplify divisive content. Perspectives on Psychological Science, 19(5), 781–795. https://doi.org/10.1177/17456916231190392
Rozin, P., & Royzman, E. B. (2001). Negativity bias, negativity dominance, and contagion. Personality and Social Psychology Review, 5(4), 296–320. https://doi.org/10.1207/S15327957PSPR0504_2
Scheffer, M., van de Leemput, I., Weinans, E., & Bollen, J. (2021). The rise and fall of rationality in language. Proceedings of the National Academy of Sciences, 118(51), e2107848118. https://doi.org/10.1073/pnas.2107848118
Schöne, J. P., Parkinson, B., & Goldenberg, A. (2021). Negativity spreads more than positivity on Twitter after both positive and negative political situations. Affective Science, 2(4), 379–390. https://doi.org/10.1007/s42761-021-00057-7
Song, X., Petrak, J., Jiang, Y., Singh, I., Maynard, D., & Bontcheva, K. (2021). Classification aware neural topic model and its application on a new COVID-19 disinformation corpus. PLOS ONE, 16(2), e0247086. https://doi.org/10.1371/journal.pone.0247086
Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and information diffusion in social media—Sentiment of microblogs and sharing behavior. Journal of Management Information Systems, 29(4), 217–248. https://doi.org/10.2753/MIS0742-1222290408
Stubbersfield, J. M. (2022). Content biases in three phases of cultural transmission: A review. Culture and Evolution, 19(1), 41–60. https://doi.org/10.1556/2055.2022.00024
Stubbersfield, J. M. (2025). Content-based learning biases. In T. Shackelford (Ed.), Encyclopedia of religious psychology and behavior (pp. 1–16). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-38971-9_134-1
Stubbersfield, J. M., Flynn, E. G., & Tehrani, J. J. (2017). Cognitive evolution and the transmission of popular narratives: A literature review and application to urban legends. Evolutionary Studies in Imaginative Culture, 1(1), 121–136. https://doi.org/10.26613/esic.1.1.20
Stubbersfield, J. M., Tehrani, J. J., & Flynn, E. G. (2015). Serial killers, spiders and cybersex: Social and survival information bias in the transmission of urban legends. British Journal of Psychology, 106(2), 288–307. https://doi.org/10.1111/bjop.12073
Tsugawa, S., & Ohsaki, H. (2015). Negative messages spread rapidly and widely on social media. Proceedings of the 2015 ACM on Conference on Online Social Networks, 151–160. https://doi.org/10.1145/2817946.2817962
Youngblood, M., Stubbersfield, J. M., Morin, O., Glassman, R., & Acerbi, A. (2023). Negativity bias in the spread of voter fraud conspiracy theory tweets during the 2020 US election. Humanities and Social Sciences Communications, 10(1), 573. https://doi.org/10.1057/s41599-023-02106-x