Have a personal or library account? Click to login
American media, Scandinavian audiences: Contextual fragmentation and polarisation among Swedes and Norwegians engaging with American politics Cover

American media, Scandinavian audiences: Contextual fragmentation and polarisation among Swedes and Norwegians engaging with American politics

Open Access
|Mar 2024

References

  1. Aalberg, T., Papathanassopoulos, S., Soroka, S., Curran, J., Hayashi, K., Iyengar, S., Jones, P. K., Mazzoleni, G., Rojas, H., Rowe, D., & Tiffen, R. (2013). International TV news, foreign affairs interest and public knowledge. Journalism Studies, 14(3), 387–406. https://doi.org/10.1080/1461670X.2013.765636
  2. Accurat, & Google News Lab. (2016, November 8). World potus. Retrieved November 23, 2017 from http://www.worldpotus.com/#/clinton/candidates/countries/drops/outside-usa/
  3. Aljebreen, A., Meng, W., & Dragut, E. (2021, May 18). Segmentation of tweets with urls and its applications to sentiment analysis. Proceedings of the AAAI Conference on Artificial Intelligence, 35(14), 12480–12488. https://doi.org/10.1609/aaai.v35i14.17480
  4. Andersen, J., & Jerijervi, D. R. (2020, November 26). Norske medier skriver over 200 saker om Trump i døgnet [Norwegian media write over 200 articles about Trump a day]. Kampanje. https://kampanje.com/medier/2020/11/norske-medier-skriver-over-200-saker-om-trump-i-dognet
  5. Appadurai, A. (1996). Modernity at large: Cultural dimensions of globalization. University of Minnesota Press.
  6. Arendt, F., Northup, T., & Camaj, L. (2019). Selective exposure and news media brands: Implicit and explicit attitudes as predictors of news choice. Media Psychology, 22(3), 526–543. https://doi.org/10.1080/15213269.2017.1338963
  7. Bail, C. (2022). Breaking the social media prism: How to make our platforms less polarizing. Princeton University Press.
  8. Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically diverse news and opinion on Facebook. Science, 348(6239), 1130–1132. https://doi.org/10.1126/science.aaa1160
  9. Benkler, Y., Faris, R., & Roberts, H. (2018). Network propaganda: Manipulation, disinformation, and radicalization in American politics. Oxford University Press. https://global.oup.com/academic/product/network-propaganda-9780190923624
  10. Bhagat, S., & Kim, D. J. (2022). Examining users’ news sharing behaviour on social media: Role of perception of online civic engagement and dual social influences. Behaviour & Information Technology, 42(8), 1194–1215. https://doi.org/10.1080/0144929X.2022.2066019
  11. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008
  12. Borra, E., & Rieder, B. (2014). Programmed method: Developing a toolset for capturing and analyzing tweets. Aslib Journal of Information Management, 66(3), 262–278. https://doi.org/doi:10.1108/AJIM-09-2013-0094
  13. Bovet, A., Morone, F., & Makse, H. A. (2018). Validation of Twitter opinion trends with national polling aggregates: Hillary Clinton vs Donald Trump. Scientific Reports, 8(1), 8673. https://doi.org/10.1038/s41598-018-26951-y
  14. Boyon, N. (2020, Oct. 28). Outside the U.S., Biden is the clear favorite. Ipsos. https://www.ipsos.com/en/global-views-us-presidential-election
  15. Bruns, A. (2018). Gatewatching and news curation: Journalism, social media, and the public sphere. Peter Lang.
  16. Bruns, A. (2019). Are filter bubbles real? John Wiley & Sons.
  17. Bruns, A., & Enli, G. (2018). The Norwegian Twittersphere: Structure and dynamics. Nordicom Review, 39(1), 129–148. https://doi.org/10.2478/nor-2018-0006
  18. Bruns, A., & Stieglitz, S. (2012). Quantitative approaches to comparing communication patterns on Twitter. Journal of Technology in Human Services, 30(3–4), 160–185. https://doi.org/10.1080/15228835.2012.744249
  19. Bruns, A., Burgess, J., & Highfield, T. (2014). A ‘big data’ approach to mapping the Australian Twittersphere. In P. L. Arthur, & K. Bode (Eds.), Advancing digital humanities (pp. 113–129). Palgrave Macmillan.
  20. Castells, M. (2015). Networks of outrage and hope: Social movements in the internet age. Polity.
  21. Clark, T. S., Staton, J. K., Wang, Y., & Agichtein, E. (2018). Using Twitter to study public discourse in the wake of judicial decisions: Public reactions to the supreme court’s same-sex-marriage cases. Journal of Law and Courts, 6(1), 93–126. https://doi.org/10.1086/695423
  22. Colleoni, E., Rozza, A., & Arvidsson, A. (2014). Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. Journal of Communication, 64(2), 317–332. https://doi.org/10.1111/jcom.12084
  23. Conover, M., Ratkiewicz, J., Francisco, M. R., Gonçalves, B., Menczer, F., & Flammini, A. (2011). Political polarization on Twitter. Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (ICWSM), 5(1), 89–96. https://doi.org/10.1609/icwsm.v5i1.14126
  24. Dahlgren, P. M. (2021). A critical review of filter bubbles and a comparison with selective exposure. Nordicom Review, 42(1), 15–33. https://doi.org/10.2478/nor-2021-0002
  25. Education First. (2019). Ef English proficiency index. Retrieved October 14, 2019, from http://www.ef.co.uk/epi/
  26. Enjolras, B., & Salway, A. (2022). Homophily and polarization on political twitter during the 2017 Norwegian election. Social Network Analysis and Mining, 13(10). https://doi.org/10.1007/s13278-022-01018-z
  27. Figenschou, T. U., & Ihlebæk, K. A. (2019). Challenging journalistic authority. Journalism Studies, 20(9), 1221–1237. https://doi.org/10.1080/1461670X.2018.1500868
  28. Finkel, E. J., Bail, C. A., Cikara, M., Ditto, P. H., Iyengar, S., Klar, S., Mason, L., McGrath, M. C., Nyhan, B., Rand, D. G., Skitka, L. J., Tucker, J. A., Van Bavel, J. J., Wang, C. S., & Druckman, J. N. (2020). Political sectarianism in America. Science, 370(6516), 533–536. https://doi.org/10.1126/science.abe1715
  29. Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter bubbles, echo chambers, and online news consumption. Public Opinion Quarterly, 80(S1), 298–320. https://doi.org/10.1093/poq/nfw006
  30. Fletcher, R., & Nielsen, R. K. (2017). Are news audiences increasingly fragmented? A cross-national comparative analysis of cross-platform news audience fragmentation and duplication. Journal of Communication, 67(4), 476–498. https://doi.org/10.1111/jcom.12315
  31. Fletcher, R., & Nielsen, R. K. (2018). Are people incidentally exposed to news on social media? A comparative analysis. New Media & Society, 20(7), 2450–2468. https://doi.org/10.1177/1461444817724170
  32. Gaol, F. L., Maulana, A., & Matsuo, T. (2020). News consumption patterns on Twitter: Fragmentation study on the online news media network. Heliyon, 6(10), e05169. https://doi.org/10.1016/j.heliyon.2020.e05169
  33. Gentzkow, M. (2016). Polarization in 2016 [White Paper]. Toulouse Network of Information Technology, Stanford University. https://web.stanford.edu/~gentzkow/research/PolarizationIn2016.pdf
  34. Gentzkow, M., & Shapiro, J. M. (2011). Ideological segregation online and offline. The Quarterly Journal of Economics, 126(4), 1799–1839. https://doi.org/10.1093/qje/qjr044
  35. Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B., & Lazer, D. (2019). Fake news on Twitter during the 2016 U.S. Presidential election. Science, 363(6425), 374–378. https://doi.org/10.1126/science.aau2706
  36. Guerra, P. H. C., Meira Jr, W., Cardie, C., & Kleinberg, R. (2013). A measure of polarization on social media networks based on community boundaries. Proceedings of the International AAAI Conference on Web and Social Media, 7(1), 15–224. https://doi.org/10.1609/icwsm.v7i1.14421
  37. Ha, L., Xu, Y., Yang, C., Wang, F., Yang, L., Abuljadail, M., Hu, X., Jiang, W., & Gabay, I. (2018). Decline in news content engagement or news medium engagement? A longitudinal analysis of news engagement since the rise of social and mobile media 2009–2012. Journalism, 19(5), 718–739. https://doi.org/10.1177/1464884916667654
  38. Hallin, D. C., & Mancini, P. (2004). Comparing media systems: Three models of media and politics. Cambridge University Press. https://doi.org/10.1017/CBO9780511790867
  39. Hedman, F., Sivnert, F., Kollanyi, B., Narayanan, V., Neudert, L.-M., & Howard, P. N. (2018). News and political information consumption in Sweden: Mapping the 2018 Swedish general election on Twitter. Computational Propaganda Data Memo, Oxford: Oxford Internet Institute, 6. https://demtech.oii.ox.ac.uk/wp-content/uploads/sites/12/2018/09/Hedman-et-al-2018.pdf
  40. Herkman, J., & Jungar, A.-C. (2021). Populism and media and communication studies in the Nordic countries. In E. Skogerbø, Ø. Ihlen, N. N. Kristensen, & L. Nord (Eds.), Power, communication, and politics in the Nordic countries (pp. 241–261). Nordicom, University of Gothenburg. https://doi.org/10.48335/9789188855299-12
  41. Hermida, A., Fletcher, F., Korell, D., & Logan, D. (2012). Share, like, recommend. Journalism Studies, 13(5–6), 815–824. https://doi.org/10.1080/1461670X.2012.664430
  42. Himelboim, I. (2017). Social network analysis (social media). In J. Matthes (Ed.), The international encyclopedia of communication research methods (pp. 1–15). Wiley. https://doi.org/10.1002/9781118901731.iecrm0236
  43. Himelboim, I., McCreery, S., & Smith, M. (2013). Birds of a feather tweet together: Integrating network and content analyses to examine cross-ideology exposure on Twitter. Journal of Computer-Mediated Communication, 18(2), 154–174. https://doi.org/10.1111/jcc4.12001
  44. Himelboim, I., Sweetser, K. D., Tinkham, S. F., Cameron, K., Danelo, M., & West, K. (2016). Valence-based homophily on Twitter: Network analysis of emotions and political talk in the 2012 presidential election. New Media & Society, 18(7), 1382–1400. https://doi.org/10.1177/1461444814555096
  45. Hindman, M. (2009). The myth of digital democracy. Princeton University Press. http://www.jstor.org/stable/j.ctt7scb3
  46. Hänska, M., & Bauchowitz, S. (2019). Can social media facilitate a European public sphere? Transnational communication and the Europeanization of Twitter during the eurozone crisis. Social Media + Society, 5(3). https://doi.org/10.1177/2056305119854686
  47. Ihlebæk, K. A., & Nygaard, S. (2021). Right-wing alternative media in the Scandinavian political communication landscape. In E. Skogerbø, Ø. Ihlen, N. N. Kristensen, & L. Nord (Eds.), Power, communication, and politics in the Nordic countries (pp. 263–282). Nordicom, University of Gothenburg. https://doi.org/10.48335/9789188855299-13
  48. Isenberg, D. J. (1986). Group polarization: A critical review and meta-analysis. Journal of Personality and Social Psychology, 50(6), 1141–1151. https://doi.org/10.1037/0022-3514.50.6.1141
  49. Iyengar, S., & Hahn, K. S. (2009). Red media, blue media: Evidence of ideological selectivity in media use. Journal of Communication, 59(1), 19–39. https://doi.org/10.1111/j.1460-2466.2008.01402.x
  50. Iyengar, S., Sood, G., & Lelkes, Y. (2012). Affect, not ideology: A social identity perspective on polarization. The Public Opinion Quarterly, 76(3), 405–431. http://www.jstor.org/stable/41684577
  51. Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PloS one, 9(6), e98679. https://doi.org/10.1371/journal.pone.0098679
  52. Jurkowitz, M., Mitchell, A., Shearer, E., & Walker, M. (2022). U.S. Media polarization and the 2020 election: A nation divided. Pew Research Center. https://www.pewresearch.org/journalism/2020/01/24/u-s-media-polarization-and-the-2020-election-a-nation-divided
  53. Larsson, A. O. (2020). Right-wingers on the rise online: Insights from the 2018 Swedish elections. New Media & Society, 22(12), 2108–2127. https://doi.org/10.1177/1461444819887700
  54. Leetaru, K. (2021, January 31). Tracking Twitter’s growth 2012–2021: Covid-19 & election 2020. RealClearWire. https://realclearwire.com/video/2021/01/31/tracking_twitters_growth_2012-2021_covid-19_and_election_2020_658613.html
  55. Leetaru, K., Wang, S., Padmanabhan, A., & Shook, E. (2013). Mapping the global Twitter heartbeat: The geography of Twitter. First Monday, 18(5). https://doi.org/10.5210/fm.v18i5.4366
  56. Lelkes, Y. (2016). Mass polarization: Manifestations and measurements. Public Opinion Quarterly, 80(S1), 392–410. https://doi.org/10.1093/poq/nfw005
  57. Livingstone, S., & Markham, T. (2008). The contribution of media consumption to civic participation. The British Journal of Sociology, 59(2), 351–371. https://doi.org/10.1111/j.1468-4446.2008.00197.x
  58. Mason, L. (2013). The rise of uncivil agreement: Issue versus behavioral polarization in the American electorate. American Behavioral Scientist, 57(1), 140–159. https://doi.org/10.1177/0002764212463363
  59. Mitchell, A., Gottfried, J., Kiley, J., & Matsa, K. E. (2014, October 21). Political polarization & media habits. Pew Research Center. http://www.journalism.org/2014/10/21/political-polarization-media-habits/#
  60. Mutz, D. C. (2006). How the mass media divide us. In D. Brady, & P. Divola (Eds.), Red and blue nation? Characteristics and causes of America’s polarized politics (Vol. 1) (pp. 223–242). Brookings Institution Press.
  61. Mutz, D. C., & Young, L. (2011). Communication and public opinion: Plus ça change? The Public Opinion Quarterly, 75(5), 1018–1044. http://www.jstor.org/stable/41345920
  62. Napoli, P. M. (2011). Audience evolution: New technologies and the transformation of media audiences. Columbia University Press.
  63. Narayanan, V., Barash, V., Kelly, J., Kollanyi, B., Neudert, L.-M., & Howard, P. N. (2018). Polarization, partisanship and junk news consumption over social media in the US. arXiv preprint arX-iv:1803.01845. https://comprop.oii.ox.ac.uk/research/polarization-partisanship-and-junk-news/
  64. Newman, N., Fletcher, R., Kalogeropoulos, A., Levy, D. A. L., & Nielsen, R. K. (2017). Reuters Institute digital news report 2017. Reuters Institute for the Study of Journalism, University of Oxford. https://reutersinstitute.politics.ox.ac.uk/our-research/digital-news-report-2017
  65. Newman, N., Fletcher, R., Schulz, A., Andı, S., & Nielsen, R. K. (2020). Reuters Institute digital news report 2020. Reuters Institute for the Study of Journalism, University of Oxford. https://reutersinstitute.politics.ox.ac.uk/digital-news-report-2020
  66. Oscarsson, H., & Strömbäck, J. (2019). Political communication in the 2018 Swedish election campaign. Statsvetenskaplig tidskrift, 121(3), 319–345. https://www.diva-portal.org/smash/get/diva2:1333531/FULLTEXT01.pdf
  67. Papacharissi, Z. (2015). Affective politics: Sentiment, technology, and politics. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199999736.001.0001
  68. Pariser, E. (2011). The filter bubble: What the internet is hiding from you. Penguin U.K.
  69. Prior, M. (2005). News vs. entertainment: How increasing media choice widens gaps in political knowledge and turnout. American Journal of Political Science, 49(3), 577–592. https://doi.org/10.1111/j.1540-5907.2005.00143.x
  70. Prior, M. (2013). Media and political polarization. Annual Review of Political Science, 16, 101–127. https://doi.org/10.1146/annurev-polisci-100711-135242
  71. Rauchfleisch, A., Vogler, D., & Eisenegger, M. (2020). Transnational news sharing on social media: Measuring and analysing Twitter news media repertoires of domestic and foreign audience communities. Digital Journalism, 8(9), 1206–1230. https://doi.org/10.1080/21670811.2020.1835511
  72. Robinson, J. Y. (2022). Fungible citizenship: On the internet no-one knows you’re a Swede. M/C Journal, 25(2). https://doi.org/10.5204/mcj.2883
  73. Robinson, J. Y., & Enli, G. (2022). #MakeSwedenGreatAgain: Media events as politics in the deter-ritorialised nationalism debate. Nordic Journal of Media Studies, 4(1), 56–80. https://doi.org/10.2478/njms-2022-0004
  74. Ross Arguedas, A., Robertson, C., Fletcher, R., & Nielsen, R. (2022). Echo chambers, filter bubbles, and polarisation: A literature review. Reuters Institute for the Study of Journalism, University of Oxford. https://ora.ox.ac.uk/objects/uuid:6e357e97-7b16-450a-a827-a92c93729a08
  75. Ryan, A. (2022). How negative out-party affect influenced public attitudes about the coronavirus crisis in Norway. Frontiers in Political Science, 4, Article 944783. https://doi.org/10.3389/fpos.2022.944783
  76. Ryan, A. (2023). Exploring differences in affective polarization between the Nordic countries. Scandinavian Political Studies, 46(1–2), 52–74. https://doi.org/10.1111/1467-9477.12244
  77. Sandberg, L. A., & Ihlebæk, K. A. (2019). Start sharing the news: Exploring the link between right-wing alternative media and social media during the Swedish 2018 election. Statsvetenskaplig tidskrift, 121(3).
  78. Schoenmueller, V., Netzer, O., & Stahl, F. (2022). Frontiers: Polarized America: From political polarization to preference polarization. Marketing Science, 42(1), 48–60. https://doi.org/10.1287/mksc.2022.1408
  79. Skogerbø, E., Bruns, A., Quodling, A., & Ingebretsen, T. (2016). Agenda-setting revisited: Social media and sourcing in mainstream journalism. In A. Bruns, G. Enli, E. Skogerbø, A. O. Larsson, & C. Christensen (Eds.), The Routledge companion to social media and politics (pp. 104–120). Routledge.
  80. Skogerbø, E., Kristensen, N. N., Nord, L., & Ihlen, Ø. (2021). Introduction: A Nordic model for political communication? In E. Skogerbø, Ø. Ihlen, N. N. Kristensen, & L. Nord (Eds.), Power, communication, and politics in the Nordic countries (pp. 13–27). Nordicom, University of Gothenburg. https://doi.org/10.48335/9789188855299-1
  81. Sloan, L., & Morgan, J. (2015). Who tweets with their location? Understanding the relationship between demographic characteristics and the use of geoservices and geotagging on Twitter. PloS one, 10(11), e0142209. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142209
  82. Steppat, D., Castro Herrero, L., & Esser, F. (2022). Selective exposure in different political information environments – how media fragmentation and polarization shape congruent news use. European Journal of Communication, 37(1), 82–102. https://doi.org/10.1177/02673231211012141
  83. Stroud, N. J. (2010). Polarization and partisan selective exposure. Journal of Communication, 60(3), 556–576. https://doi.org/10.1111/j.1460-2466.2010.01497.x
  84. Sunstein, C. R. (2007). Republic.Com 2.0. Princeton University Press. http://www.jstor.org/stable/j.ctt7tbsw
  85. Syvertsen, T., Enli, G., Mjøs, O. J., & Moe, H. (2014). The media welfare state: Nordic media in the digital era. University of Michigan Press. https://doi.org/10.3998/nmw.12367206.0001.001
  86. Thorson, K., & Wells, C. (2016). Curated flows: A framework for mapping media exposure in the digital age. Communication Theory, 26(3), 309–328. https://doi.org/10.1111/comt.12087
  87. Trilling, D., Tolochko, P., & Burscher, B. (2017). From newsworthiness to shareworthiness: How to predict news sharing based on article characteristics. Journalism & Mass Communication Quarterly, 94(1), 38–60. https://doi.org/10.1177/1077699016654682
  88. Tripodi, T., & Potocky-Tripodi, M. (2006). Intranational research. In T. Tripodi, & M. Potocky-Tripodi (Eds.), International social work research: Issues and prospects (pp. 105–131). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195187250.001.0001
  89. Twitter Engineering [X Engineering]. (2015, November 16). Evaluating language identification performance [Blog post]. https://blog.twitter.com/engineering/en_us/a/2015/evaluating-language-identification-performance
  90. Urman, A. (2020). Context matters: Political polarization on Twitter from a comparative perspective. Media, Culture & Society, 42(6), 857–879. https://doi.org/10.1177/0163443719876541
  91. van Dijck, J., & Poell, T. (2013). Understanding social media logic. Media and Communication, 1(1), 2–14. https://doi.org/10.17645/mac.v1i1.70
  92. Vliegenthart, R., Boomgaarden, H. G., Van Aelst, P., & de Vreese, C. H. (2010). Covering the US presidential election in western Europe: A cross-national. Acta Politica, 45(4), 444–467. https://doi.org/10.1057/ap.2010.2
  93. Wall, M. (2015). Citizen journalism: A retrospective on what we know, an agenda for what we don’t. Digital Journalism, 3(6), 797–813. https://doi.org/10.1080/21670811.2014.1002513
  94. Ward, A. F., Zheng, J., & Broniarczyk, S. M. (2022). I share, therefore i know? Sharing online content – even without reading it – inflates subjective knowledge. Journal of Consumer Psychology, 33(3), 469–488. https://doi.org/10.1002/jcpy.1321
  95. Webster, J. G. (2005). Beneath the veneer of fragmentation: Television audience polarization in a multichannel world. Journal of Communication, 55(2), 366–382.
  96. Webster, J. G., & Ksiazek, T. B. (2012). The dynamics of audience fragmentation: Public attention in an age of digital media. Journal of Communication, 62(1), 39–56. https://doi.org/10.1111/j.1460-2466.2011.01616.x
  97. Webster, J. G., Phalen, P. F., & Lichty, L. W. (2006). Ratings analysis: The theory and practice of audience research. Lawrence Erlbaum Associates.
  98. Weeks, B. E., Ksiazek, T. B., & Holbert, R. L. (2016). Partisan enclaves or shared media experiences? A network approach to understanding citizens’ political news environments. Journal of Broadcasting & Electronic Media, 60(2), 248–268. https://doi.org/10.1080/08838151.2016.1164170
  99. Wojcik, S., & Hughes, A. (2019). Sizing up Twitter users. Pew Research Center. https://www.pewresearch.org/internet/2019/04/24/sizing-up-twitter-users/
  100. Wong, F. M. F., Tan, C. W., Sen, S., & Chiang, M. (2016). Quantifying political leaning from tweets, retweets, and retweeters. IEEE transactions on knowledge and data engineering, 28(8), 2158–2172. https://doi.org/10.1109/TKDE.2016.2553667
DOI: https://doi.org/10.2478/nor-2024-0010 | Journal eISSN: 2001-5119 | Journal ISSN: 1403-1108
Language: English
Page range: 120 - 151
Published on: Mar 12, 2024
Published by: University of Gothenburg Nordicom
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Jessica Yarin Robinson, published by University of Gothenburg Nordicom
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.