Have a personal or library account? Click to login
Navigating the Automation–Augmentation Paradox: A Case Study of Artificial Intelligence Integration in Public Management Functions Cover

Navigating the Automation–Augmentation Paradox: A Case Study of Artificial Intelligence Integration in Public Management Functions

Open Access
|Dec 2025

References

  1. Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction machines: The simple economics of artificial intelligence. Harvard Business Review Press.
  2. Bannister, F., & Connolly, R. (2014). ICT, public values and transformative government: A framework and programme for research. Government Information Quarterly, 31(1), 119-128. https://doi.org/10.1016/j.giq.2013.06.002
  3. Batarseh, F., & Yang, R. (Eds.). (2020). Data democracy: At the nexus of artificial intelligence, software development, and knowledge engineering (1st ed.). Academic Press.
  4. Bezes, P., & Jeannot, G. (2018). Autonomy and managerial reforms in Europe: Let or make public managers manage? Public Administration, 96(1), 3-22. https://doi.org/10.1111/padm.12361
  5. Brock, J. K.-U., & Von Wangenheim, F. (2019). Demystifying AI: What Digital Transformation Leaders Can Teach You about Realistic Artificial Intelligence. California Management Review, 61(4), 110–134. https://doi.org/10.1177/1536504219865226
  6. Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 1530–1534. https://doi.org/10.1126/science.aap8062
  7. By, R. T. (2005). Organisational change management: A critical review. Journal of Change Management, 5(4), 369–380. https://doi.org/10.1080/14697010500359250
  8. Cable, D. M., & DeRue, D. S. (2002). The convergent and discriminant validity of subjective fit perceptions. Journal of Applied Psychology, 87(5), 875-884. https://doi.org/10.1037/0021-9010.87.5.875
  9. Chaturvedi, A., Yadav, N., & Dasgupta, M. (2025). Tech-Driven Transformation: Unravelling the Role of Artificial Intelligence in Shaping Strategic Decision-Making. International Journal of Human-Computer Interaction, 41(19), 12305–12324. https://doi.org/10.1080/10447318.2025.2456534
  10. Chowdhury, A., & Chandra Shil, N. (2022). Understanding change management in organizational context: Revisiting literature. Management and Entrepreneurship: Trends of Development, 1(19), 28–43. https://doi.org/10.26661/2522-1566/2022-1/19-03
  11. Cordella, A., & Willcocks, L. (2012). Government policy, public value and IT outsourcing: The strategic case of ASPIRE. The Journal of Strategic Information Systems, 21(4), 295–307. https://doi.org/10.1016/j.jsis.2012.10.007
  12. Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the Real World. Harvard Business Review, 96(1), 108–116.
  13. Deci, E. L., & Ryan, R. M. (1994). Promoting Self-determined Education. Scandinavian Journal of Educational Research, 38(1), 3–14. https://doi.org/10.1080/0031383940380101
  14. Derrida, J. (1998). Of grammatology (Corrected ed). Johns Hopkins University Press.
  15. Eisenhardt, K. M. (1989). Agency theory: An assessment and review. The Academy of Management Review, 14(1), 57–74. https://doi.org/10.2307/258191
  16. Entwistle, T. (2021). Public Management. Routledge. https://doi.org/10.4324/9780429331046
  17. Gagné, M., Forest, J., Gilbert, M.-H., Aubé, C., Morin, E., & Malorni, A. (2010). The Motivation at Work Scale: Validation Evidence in Two Languages. Educational and Psychological Measurement, 70(4), 628-646. https://doi.org/10.1177/0013164409355698
  18. Gauld, R. (2007). PRINCIPAL-AGENT THEORY AND ORGANISATIONAL CHANGE: Lessons from New Zealand Health Information Management. Policy Studies, 28(1), 17–34. https://doi.org/10.1080/01442870601121395
  19. Geisler, E. (1986). Artificial management and the artificial manager. Business Horizons, 29(4), 17–21. https://doi.org/10.1016/0007-6813(86)90018-2
  20. Gillespie, T. (2014). The Relevance of Algorithms. In T. Gillespie, P. J. Boczkowski, & K. A. Foot (Eds.), Media Technologies (pp. 167-194). The MIT Press, https://doi.org/10.7551/mitpress/9780262525374.003.0009
  21. Guggenberger, T., Lämmermann, L., Urbach, N., Walter, A., & Hofmann, P. (2023). Task delegation from AI to humans: A principal-agent perspective. ICIS 2023 Proceedings, https://aisel.aisnet.org/icis2023/hti/hti/13
  22. Gulick, L. H., & Urwick, L. (1937). Papers on the science of administration. Institute of Public Administration. https://dn720003.ca.archive.org/0/items/papersonscienceo00guli/papersonscienceo00guli.pdf
  23. György, A. (2012). Public Sector’s Principal-Agent Theory in a Global World. Politeja, 20/3, 101–108.
  24. Hadfield-Menell, D. (2021). The Principal-Agent Alignment Problem in Artificial Intelligence (Technical Report No. UCB/EECS-2021-207; p. 166). University of California. https://www2.eecs.berkeley.edU/Pubs/TechRpts/2021/EECS-2021-207.pdf
  25. Haefner, N., Wincent, J., Parida, V., & Gassmann, O. (2021). Artificial intelligence and innovation management: A review, framework, and research agenda*. Technological Forecasting and Social Change, 162, 120392. https://doi.org/10.1016/j.techfore.2020.120392
  26. Holzinger, A. (2016). Interactive machine learning for health informatics: When do we need the human-in-the-loop? Brain Informatics, 3(2), 119–131. https://doi.org/10.1007/S40708-016-0042-6
  27. Hox, J., Moerbeek, M., & Van De Schoot, R. (2010). Multilevel Analysis (0 ed.). Routledge. https://doi.org/10.4324/9780203852279
  28. Huang, Y., Liao, J., & Lin, Z. (2009). A study on aggregation of group decisions. Systems Research and Behavioral Science, 26(4), 445–454. https://doi.org/10.1002/sres.941
  29. Janković, A., & Popović, M. (2019). Methods for assigning weights to decision makers in group AHP decision-making. Decision Making: Applications in Management and Engineering, 2(1), 147-165. https://doi.org/10.31181/dmame1901147j
  30. Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577-586. https://doi.org/10.1016/j.bushor.2018.03.007
  31. Jensen, M. C., & Meckling, W. H. (1976). Theory of the firm: Managerial behavior, agency costs and ownership structure. Journal of Financial Economics, 3(4), 305-360. https://doi.org/10.1016/0304-405X(76)90026-X
  32. Jordan, M. L, & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. https://doi.org/10.1126/science.aaa8415
  33. Klein, K. J., & Kozlowski, S. W. J. (2000). From Micro to Meso: Critical Steps in Conceptualizing and Conducting Multilevel Research. Organizational Research Methods, 3(3), 211-236. https://doi.org/10.1177/109442810033001
  34. Koivula, K., Shamsuzzoha, A., & Shamsuzzaman, M. (2024). Application of artificial intelligence as a knowledge creation instrument in tax procedures. Engineering Applications of Artificial Intelligence, 133, 108417. https://doi.org/10.1016/j.engappai.2024.108417
  35. Kolbjørnsrud, V., Amico, R., & Thomas, R. J. (2016). How Artificial Intelligence Will Redefine Management. Harvard Business Review, 2(1). https://hbr.org/2016/11/how-artificial-intelligence-will-redefine-management
  36. Kolt, N. (2025). Governing AI Agents. Notre Dame Law Review, 101, 1-48. https://doi.org/10.2139/ssrn.4772956
  37. Lane, J.-E. (2013). The Principal-Agent Approach to Politics: Policy Implementation and Public Policy-Making. Open Journal of Political Science, 03(02), 85-89. https://doi.org/10.4236/ojps.2013.32012
  38. Lane, J.-E. (2020). The Principal–Agent Approach and Public Administration. In J.-E. Lane, Oxford Research Encyclopedia of Politics. Oxford University Press, https://doi.org/10.1093/acrefore/9780190228637.013.1462
  39. Langley, P., & Simon, H. A. (1995). Applications of machine learning and rule induction. Communications of the ACM, 38(11), 54–64. https://doi.org/10.1145/219717.219768
  40. Madan, R., & Ashok, M. (2023). AI adoption and diffusion in public administration: A systematic literature review and future research agenda. Government Information Quarterly, 40(1), 101774. https://doi.org/10.1016/j.giq.2022.101774
  41. Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An Integrative Model of Organizational Trust. The Academy of Management Review, 20(3), 709. https://doi.org/10.2307/258792
  42. Mikalef, P., Islam, N., Parida, V., Singh, H., & Altwaijry, N. (2023). Artificial intelligence (AI) competencies for organizational performance: A B2B marketing capabilities perspective. Journal of Business Research, 164, 113998. https://doi.org/10.1016/j.jbusres.2023.113998
  43. Orsini, J.-F. (1986). Artificial intelligence: A way through the strategic planning crisis? Long Range Planning, 19(4), 71-77. https://doi.org/10.1016/0024-6301(86)90273-6
  44. Ossadnik, W., Schinke, S., & Kaspar, R. H. (2016). Group Aggregation Techniques for Analytic Hierarchy Process and Analytic Network Process: A Comparative Analysis. Group Decision and Negotiation, 25(2), 421-457. https://doi.org/10.1007/S10726-015-9448-4
  45. Pevcin, P., & Debelak, K. (2025). Artificial Intelligence and Public Management: A Systematic Literature Review of the Prevailing Directions of Research. In S. Drezgič, V. Buterin, N. D. Samaržija, A. A. Blecich, & B. Fajdetić (Eds.), Artificial Intelligence and Productivity: Challenges and Opportunities (pp. 145-158). University of Rijeka, Faculty of Economics and Business, https://www.efri.uniri.hr/upload/319.%20sjednica/To%C4%8Dka_3.l._2.pdf
  46. Podsakoff, N. P., Whiting, S. W., Podsakoff, P. M., & Blume, B. D. (2009). Individual- and organizational-level consequences of organizational citizenship behaviors: A meta-analysis. Journal of Applied Psychology, 94(1), 122-141. https://doi.org/10.1037/a0013079
  47. Raisch, S., & Krakowski, S. (2021). Artificial Intelligence and Management: The Automation-Augmentation Paradox. Academy of Management Review, 46(1), 192-210. https://doi.org/10.5465/amr.2018.0072
  48. Russell, S. J., Norvig, P., & Davis, E. (2010). Artificial intelligence: A modern approach (3rd ed). Prentice Hall.
  49. Saaty, T. L. (1990). An Exposition of the AHP in Reply to the Paper “Remarks on the Analytic Hierarchy Process.” Management Science, 36(3), 259-268. https://doi.org/10.1287/mnsc.36.3.259
  50. Shafiabady, N., Hadjinicolaou, N., Din, F. U., Bhandari, B., Wu, R. M. X., & Vakilian, J. (2023). Using Artificial Intelligence (AI) to predict organizational agility. PLOS ONE, 18(5), e0283066. https://doi.org/10.1371/journal.pone.0283066
  51. Smith, W. K., & Lewis, M. W. (2011). Toward a Theory of Paradox: A Dynamic equilibrium Model of Organizing. Academy of Management Review, 36(2), 381 — 403. https://doi.org/10.5465/amr.2009.0223
  52. Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel modeling (2. ed). SAGE.
  53. Sousa, W. G. D., Melo, E. R. P. D., Bermejo, P. H. D. S., Farias, R. A. S., & Gomes, A. O. (2019). How and where is artificial intelligence in the public sector going? A literature review and research agenda. Government Information Quarterly, 36(4), 101392. https://doi.org/10.1016/j.giq.2019.07.004
  54. Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial Intelligence in Human Resources Management: Challenges and a Path Forward. California Management Review, 61(4), 15-42. https://doi.org/10.1177/0008125619867910
  55. Urs, N., Roja, A., & Nisioi, I. (2024). Digital Transformation in Organizational Management: A Bibliometric Analysis. NISPAcee Journal of Public Administration and Policy, 17(1), 198-227. https://doi.org/10.2478/nispa-2024-0009
  56. Van Thiel, S., & Smullen, A. (2021). Principals and Agents, or Principals and Stewards? Australian Arms Length Agencies’ Perceptions of Arm’s Length Government Instruments. Public Performance & Management Review, 44(4), 758-784. https://doi.org/10.1080/15309576.2021.1881803
  57. Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the Qualitative-Quantitative Divide: Guidelines for Conducting Mixed Methods Research in Information Systemsl. MIS Quarterly, 37(1), 21-54. https://doi.org/10.25300/MISQ/2013/37.1.02
  58. Yoo, D.-H., & Giannetti, C. (2024). A Principal-Agent Model for Ethical AI: Optimal Contracts and Incentives for Ethical Alignment. Discussion Papers, Article 2024/313. https://www.ec.unipi.it/documents/Ricerca/papers/2024-313.pdf
  59. Zuiderwijk, A., Janssen, M., & Dwivedi, Y. K. (2015). Acceptance and use predictors of open data technologies: Drawing upon the unified theory of acceptance and use of technology. Government Information Quarterly, 32(4), 429-440. https://doi.org/10.1016/j.giq.2015.09.005
Language: English
Page range: 106 - 135
Published on: Dec 13, 2025
Published by: NISPAcee
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Primož Pevcin, Rok Hržica, Katja Debelak, published by NISPAcee
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.