References
- Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction machines: The simple economics of artificial intelligence. Harvard Business Review Press.
- Bannister, F., & Connolly, R. (2014). ICT, public values and transformative government: A framework and programme for research. Government Information Quarterly, 31(1), 119-128. https://doi.org/10.1016/j.giq.2013.06.002
- Batarseh, F., & Yang, R. (Eds.). (2020). Data democracy: At the nexus of artificial intelligence, software development, and knowledge engineering (1st ed.). Academic Press.
- Bezes, P., & Jeannot, G. (2018). Autonomy and managerial reforms in Europe: Let or make public managers manage? Public Administration, 96(1), 3-22. https://doi.org/10.1111/padm.12361
- Brock, J. K.-U., & Von Wangenheim, F. (2019). Demystifying AI: What Digital Transformation Leaders Can Teach You about Realistic Artificial Intelligence. California Management Review, 61(4), 110–134. https://doi.org/10.1177/1536504219865226
- Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 1530–1534. https://doi.org/10.1126/science.aap8062
- By, R. T. (2005). Organisational change management: A critical review. Journal of Change Management, 5(4), 369–380. https://doi.org/10.1080/14697010500359250
- Cable, D. M., & DeRue, D. S. (2002). The convergent and discriminant validity of subjective fit perceptions. Journal of Applied Psychology, 87(5), 875-884. https://doi.org/10.1037/0021-9010.87.5.875
- Chaturvedi, A., Yadav, N., & Dasgupta, M. (2025). Tech-Driven Transformation: Unravelling the Role of Artificial Intelligence in Shaping Strategic Decision-Making. International Journal of Human-Computer Interaction, 41(19), 12305–12324. https://doi.org/10.1080/10447318.2025.2456534
- Chowdhury, A., & Chandra Shil, N. (2022). Understanding change management in organizational context: Revisiting literature. Management and Entrepreneurship: Trends of Development, 1(19), 28–43. https://doi.org/10.26661/2522-1566/2022-1/19-03
- Cordella, A., & Willcocks, L. (2012). Government policy, public value and IT outsourcing: The strategic case of ASPIRE. The Journal of Strategic Information Systems, 21(4), 295–307. https://doi.org/10.1016/j.jsis.2012.10.007
- Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the Real World. Harvard Business Review, 96(1), 108–116.
- Deci, E. L., & Ryan, R. M. (1994). Promoting Self-determined Education. Scandinavian Journal of Educational Research, 38(1), 3–14. https://doi.org/10.1080/0031383940380101
- Derrida, J. (1998). Of grammatology (Corrected ed). Johns Hopkins University Press.
- Eisenhardt, K. M. (1989). Agency theory: An assessment and review. The Academy of Management Review, 14(1), 57–74. https://doi.org/10.2307/258191
- Entwistle, T. (2021). Public Management. Routledge. https://doi.org/10.4324/9780429331046
- Gagné, M., Forest, J., Gilbert, M.-H., Aubé, C., Morin, E., & Malorni, A. (2010). The Motivation at Work Scale: Validation Evidence in Two Languages. Educational and Psychological Measurement, 70(4), 628-646. https://doi.org/10.1177/0013164409355698
- Gauld, R. (2007). PRINCIPAL-AGENT THEORY AND ORGANISATIONAL CHANGE: Lessons from New Zealand Health Information Management. Policy Studies, 28(1), 17–34. https://doi.org/10.1080/01442870601121395
- Geisler, E. (1986). Artificial management and the artificial manager. Business Horizons, 29(4), 17–21. https://doi.org/10.1016/0007-6813(86)90018-2
- Gillespie, T. (2014). The Relevance of Algorithms. In T. Gillespie, P. J. Boczkowski, & K. A. Foot (Eds.), Media Technologies (pp. 167-194). The MIT Press, https://doi.org/10.7551/mitpress/9780262525374.003.0009
- Guggenberger, T., Lämmermann, L., Urbach, N., Walter, A., & Hofmann, P. (2023). Task delegation from AI to humans: A principal-agent perspective. ICIS 2023 Proceedings, https://aisel.aisnet.org/icis2023/hti/hti/13
- Gulick, L. H., & Urwick, L. (1937). Papers on the science of administration. Institute of Public Administration. https://dn720003.ca.archive.org/0/items/papersonscienceo00guli/papersonscienceo00guli.pdf
- György, A. (2012). Public Sector’s Principal-Agent Theory in a Global World. Politeja, 20/3, 101–108.
- Hadfield-Menell, D. (2021). The Principal-Agent Alignment Problem in Artificial Intelligence (Technical Report No. UCB/EECS-2021-207; p. 166). University of California. https://www2.eecs.berkeley.edU/Pubs/TechRpts/2021/EECS-2021-207.pdf
- Haefner, N., Wincent, J., Parida, V., & Gassmann, O. (2021). Artificial intelligence and innovation management: A review, framework, and research agenda*. Technological Forecasting and Social Change, 162, 120392. https://doi.org/10.1016/j.techfore.2020.120392
- Holzinger, A. (2016). Interactive machine learning for health informatics: When do we need the human-in-the-loop? Brain Informatics, 3(2), 119–131. https://doi.org/10.1007/S40708-016-0042-6
- Hox, J., Moerbeek, M., & Van De Schoot, R. (2010). Multilevel Analysis (0 ed.). Routledge. https://doi.org/10.4324/9780203852279
- Huang, Y., Liao, J., & Lin, Z. (2009). A study on aggregation of group decisions. Systems Research and Behavioral Science, 26(4), 445–454. https://doi.org/10.1002/sres.941
- Janković, A., & Popović, M. (2019). Methods for assigning weights to decision makers in group AHP decision-making. Decision Making: Applications in Management and Engineering, 2(1), 147-165. https://doi.org/10.31181/dmame1901147j
- Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577-586. https://doi.org/10.1016/j.bushor.2018.03.007
- Jensen, M. C., & Meckling, W. H. (1976). Theory of the firm: Managerial behavior, agency costs and ownership structure. Journal of Financial Economics, 3(4), 305-360. https://doi.org/10.1016/0304-405X(76)90026-X
- Jordan, M. L, & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. https://doi.org/10.1126/science.aaa8415
- Klein, K. J., & Kozlowski, S. W. J. (2000). From Micro to Meso: Critical Steps in Conceptualizing and Conducting Multilevel Research. Organizational Research Methods, 3(3), 211-236. https://doi.org/10.1177/109442810033001
- Koivula, K., Shamsuzzoha, A., & Shamsuzzaman, M. (2024). Application of artificial intelligence as a knowledge creation instrument in tax procedures. Engineering Applications of Artificial Intelligence, 133, 108417. https://doi.org/10.1016/j.engappai.2024.108417
- Kolbjørnsrud, V., Amico, R., & Thomas, R. J. (2016). How Artificial Intelligence Will Redefine Management. Harvard Business Review, 2(1). https://hbr.org/2016/11/how-artificial-intelligence-will-redefine-management
- Kolt, N. (2025). Governing AI Agents. Notre Dame Law Review, 101, 1-48. https://doi.org/10.2139/ssrn.4772956
- Lane, J.-E. (2013). The Principal-Agent Approach to Politics: Policy Implementation and Public Policy-Making. Open Journal of Political Science, 03(02), 85-89. https://doi.org/10.4236/ojps.2013.32012
- Lane, J.-E. (2020). The Principal–Agent Approach and Public Administration. In J.-E. Lane, Oxford Research Encyclopedia of Politics. Oxford University Press, https://doi.org/10.1093/acrefore/9780190228637.013.1462
- Langley, P., & Simon, H. A. (1995). Applications of machine learning and rule induction. Communications of the ACM, 38(11), 54–64. https://doi.org/10.1145/219717.219768
- Madan, R., & Ashok, M. (2023). AI adoption and diffusion in public administration: A systematic literature review and future research agenda. Government Information Quarterly, 40(1), 101774. https://doi.org/10.1016/j.giq.2022.101774
- Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An Integrative Model of Organizational Trust. The Academy of Management Review, 20(3), 709. https://doi.org/10.2307/258792
- Mikalef, P., Islam, N., Parida, V., Singh, H., & Altwaijry, N. (2023). Artificial intelligence (AI) competencies for organizational performance: A B2B marketing capabilities perspective. Journal of Business Research, 164, 113998. https://doi.org/10.1016/j.jbusres.2023.113998
- Orsini, J.-F. (1986). Artificial intelligence: A way through the strategic planning crisis? Long Range Planning, 19(4), 71-77. https://doi.org/10.1016/0024-6301(86)90273-6
- Ossadnik, W., Schinke, S., & Kaspar, R. H. (2016). Group Aggregation Techniques for Analytic Hierarchy Process and Analytic Network Process: A Comparative Analysis. Group Decision and Negotiation, 25(2), 421-457. https://doi.org/10.1007/S10726-015-9448-4
- Pevcin, P., & Debelak, K. (2025). Artificial Intelligence and Public Management: A Systematic Literature Review of the Prevailing Directions of Research. In S. Drezgič, V. Buterin, N. D. Samaržija, A. A. Blecich, & B. Fajdetić (Eds.), Artificial Intelligence and Productivity: Challenges and Opportunities (pp. 145-158). University of Rijeka, Faculty of Economics and Business, https://www.efri.uniri.hr/upload/319.%20sjednica/To%C4%8Dka_3.l._2.pdf
- Podsakoff, N. P., Whiting, S. W., Podsakoff, P. M., & Blume, B. D. (2009). Individual- and organizational-level consequences of organizational citizenship behaviors: A meta-analysis. Journal of Applied Psychology, 94(1), 122-141. https://doi.org/10.1037/a0013079
- Raisch, S., & Krakowski, S. (2021). Artificial Intelligence and Management: The Automation-Augmentation Paradox. Academy of Management Review, 46(1), 192-210. https://doi.org/10.5465/amr.2018.0072
- Russell, S. J., Norvig, P., & Davis, E. (2010). Artificial intelligence: A modern approach (3rd ed). Prentice Hall.
- Saaty, T. L. (1990). An Exposition of the AHP in Reply to the Paper “Remarks on the Analytic Hierarchy Process.” Management Science, 36(3), 259-268. https://doi.org/10.1287/mnsc.36.3.259
- Shafiabady, N., Hadjinicolaou, N., Din, F. U., Bhandari, B., Wu, R. M. X., & Vakilian, J. (2023). Using Artificial Intelligence (AI) to predict organizational agility. PLOS ONE, 18(5), e0283066. https://doi.org/10.1371/journal.pone.0283066
- Smith, W. K., & Lewis, M. W. (2011). Toward a Theory of Paradox: A Dynamic equilibrium Model of Organizing. Academy of Management Review, 36(2), 381 — 403. https://doi.org/10.5465/amr.2009.0223
- Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel modeling (2. ed). SAGE.
- Sousa, W. G. D., Melo, E. R. P. D., Bermejo, P. H. D. S., Farias, R. A. S., & Gomes, A. O. (2019). How and where is artificial intelligence in the public sector going? A literature review and research agenda. Government Information Quarterly, 36(4), 101392. https://doi.org/10.1016/j.giq.2019.07.004
- Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial Intelligence in Human Resources Management: Challenges and a Path Forward. California Management Review, 61(4), 15-42. https://doi.org/10.1177/0008125619867910
- Urs, N., Roja, A., & Nisioi, I. (2024). Digital Transformation in Organizational Management: A Bibliometric Analysis. NISPAcee Journal of Public Administration and Policy, 17(1), 198-227. https://doi.org/10.2478/nispa-2024-0009
- Van Thiel, S., & Smullen, A. (2021). Principals and Agents, or Principals and Stewards? Australian Arms Length Agencies’ Perceptions of Arm’s Length Government Instruments. Public Performance & Management Review, 44(4), 758-784. https://doi.org/10.1080/15309576.2021.1881803
- Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the Qualitative-Quantitative Divide: Guidelines for Conducting Mixed Methods Research in Information Systemsl. MIS Quarterly, 37(1), 21-54. https://doi.org/10.25300/MISQ/2013/37.1.02
- Yoo, D.-H., & Giannetti, C. (2024). A Principal-Agent Model for Ethical AI: Optimal Contracts and Incentives for Ethical Alignment. Discussion Papers, Article 2024/313. https://www.ec.unipi.it/documents/Ricerca/papers/2024-313.pdf
- Zuiderwijk, A., Janssen, M., & Dwivedi, Y. K. (2015). Acceptance and use predictors of open data technologies: Drawing upon the unified theory of acceptance and use of technology. Government Information Quarterly, 32(4), 429-440. https://doi.org/10.1016/j.giq.2015.09.005