References
- Kim Y., Hanif A., Usman M., Munir M.J., Kazmi S.M.S. & Kim S.: “Slag waste incorporation in high early strength concrete as cement replacement: Environmental impact and influence on hydration & durability attributes”. Journal of Cleaner Production, Vol. 172, 2018, 10 pp. https://doi.org/10.1016/j.jclepro.2017.11.105.
- Wang B., Yan L., Fu Q. & Kasal B.: “A Comprehensive Review on Recycled Aggregate and Recycled Aggregate Concrete”. Resources, Conservation & Recycling, Vol.171, 2021, 29 pp. https://doi.org/10.1016/j.resconrec.2021.105565.
- Kisku N., Joshi H., Ansari M., Panda S.K., Nayak S. & Dutta S.C.: “A critical review and assessment for usage of recycled aggregate as sustainable construction material”. Construction and Building Materials, Vol. 131, 2017, 20 pp. http://dx.doi.org/10.1016/j.conbuildmat.2016.11.029.
- Mettke A. “Material- und Produktrecycling – am Beispiel von Plattenbauten” (Material and product recycling – using the example of prefabricated buildings). Brandenburg University of Technology Cottbus – Senftenberg, 2010, 363 pp. (In German).
- Küpfer C., Bastien-Masse M. & Fivet C.: “Reuse of concrete components in new construction projects: Critical review of 77 circular precedents”. Journal of Cleaner Production, Vol. 383, No. 135235, 2023, 26 pp. https://doi.org/10.1016/j.jclepro.2022.135235.
- Rakhshan K., Morel J-C., Alaka H. & Charef R.: “Components reuse in the building sector – A systematic review”. Waste Management & Research, Vol. 38, No. 4, 2020, 24 pp. https://doi.org/10.1177/0734242X20910463.
- Devènes J., Bastien-Masse M. & Fivet C.: “Reusability assessment of reinforced concrete components prior to deconstruction from obsolete buildings”. Journal of Building Engineering, Vol 84, No. 108584, 2024, 19 pp. https://doi.org/10.1016/j.jobe.2024.108584.
- Neville A.: “Properties of Concrete”. Harlow: Pearson Education Limited, Edinburgh, Scotland, 2011, 5th Ed., 846 pp.
- Bungey J., Millard S. & Grantham M.: “Testing of Concrete in Structures”. Taylor & Francis Group, London, UK, 2018, 4th Ed., 352 pp.
- Chang C-F. & Chen J-W.: “The experimental investigation of concrete carbonation depth”. Cement and Concrete Research, Vol. 36, 2006, 8 pp. https://doi.org/10.1016/j.cemconres.2004.07.025.
- Broomfield J.: “Corrosion of steel in concrete”. Taylor & Francis, London, UK, 2007, 2nd Ed., 296 pp.
- Tuutti K.: “Corrosion of steel in concrete”. Swedish Cement and Concrete Research Institute, Stockholm, Sweden, 1982, 468 pp.
- Hunkeler, F.: “Grundlagen der Korrosion und der Potentialmessung bei Stahlbetonbauwerken“. (Basics of corrosion and potential measurement in reinforced concrete structures). FA 86/90, Bericht VSS No. 510, Eidgenössisches Verkehrs- und Energiewirtschaftsdepartement, Bundesamt für Strassenbau, Schweizerische Gesellschaft für Korrosionsschutz, Zürich, Switzerland, 1994, 166 pp. (In German).
- Hunkeler, F.: “Anforderungen an den Karbonatisierungswiderstanden von Betonen“. (Requirements for the carbonation resistance of concrete). FA 012, Bericht VSS No. 649, TFB AG – Technik und Forschung im Betonbau, Wildegg, Switzerland, 2008, 191 pp. (In German).
- Merah A., Korichi Y. & Khenfer M.M.: “Effect of cement types on carbonation depth of concrete”. Journal of Building Materials and Structures, Vol. 7, 2020, 8 pp. https://doi.org/10.34118/jbms.v7i1.706.
- Bier T.A.: “Influence of type of cement and curing on carbonation progress and pore structure of hydrated cement paste”. Materials Research Society Symposium, Vol. 85, No. 123, 1987. https://doi.org/10.1557/PROC-85-123.
- Paul S.C., Panda B., Huang Y., Garg A. & Peng X.: “An empirical model design for evaluation and estimation of carbonation depth in concrete”. Measurement, Vol. 124, 2018, 6 pp. https://doi.org/10.1016/j.measurement.2018.04.033.
- Ben Bassat M., Nixon P.J. & Hardcastle J.: “The effect of differences in the composition Portland cement on the properties of hardened concrete”. Magazine of concrete research, Vol. 42, No. 151, 1990, pp. 59-66. https://doi.org/10.1680/macr.1990.42.151.59.
- Lahdensivu J.: “Durability Properties and Actual Deterioration of Finnish Concrete Facades and Balconies”. No. 1028 (PhD Thesis), Tampere University of Technology, Dept. of Civil Engineering, Tampere, Finland, 2012, 156 pp. https://urn.fi/URN:ISBN:978-952-15-2823-1.
- Liu P., Yu Z. & Chen Y.: “Carbonation depth model and carbonated acceleration rate of concrete under different environment”. Cement and Concrete Composites, Vol. 114, 2020, 16 pp. https://doi.org/10.1016/j.cemconcomp.2020.103736.
- Liu M., Ju X., Wu L., Guo Q., Wang H. & Zhang W.: “Carbonation depth model for loaded reinforced concrete (RC) beams under time-dependent relative humidity conditions”. Journal of Building Engineering, Vol. 65, 2023, 16 pp. https://doi.org/10.1016/j.jobe.2022.105618.
- Peng J., Tang H., Zhang J. & Cai S.C.S.: “Numerical Simulation on Carbonation Depth of Concrete Structures considering Time- and Temperature-Dependent Carbonation Process”. Advances in Materials Science and Engineering, 2018, 16 pp. https://doi.org/10.1155/2018/2326017.
- Chen Y., Liu P. & Yu Z.: “Effects of Environmental Factors on Concrete Carbonation Depth and Compressive Strength”. Materials, Vol. 11, No. 2167, 2018, 12 pp. https://doi.org/10.3390/ma11112167.
- Wang J., Su H. & Du J.: “Influence of coupled effects between flexural tensile stress and carbonation time on the carbonation depth of concrete”. Construction and Building Materials, Vol. 190, 2018, 13 pp. https://doi.org/10.1016/j.conbuildmat.2018.09.117.
- Wang W., Lu C., Li Y., Yuan G. & Li Q.: “Effects of stress and high temperature on the carbonation resistance of fly ash concrete”. Construction and Building Materials, Vol. 138, 2017, 10 pp. http://dx.doi.org/10.1016/j.conbuildmat.2017.02.039.
- Huo Z., Wang L. & Huang Y.: “Predicting carbonation depth of concrete using a hybrid ensemble model”. Journal of Building Engineering, Vol. 76, No. 107320, 2023, 27 pp. https://doi.org/10.1016/j.jobe.2023.107320.
- RILEM TC: “CPC 18 Measurement of hardened concrete carbonation depth”. RILEM Recommendations for the Testing and Use of Construction Materials, E & FN SPON, 1994, pp. 56-58. DOI: 10.1617/2351580117.026.
- EN 12390-10:2019: “Testing hardened concrete. Part 10: Determination of the carbonation resistance of concrete at atmospheric levels of carbon dioxide”. European Committee of Standardization, 2019, 24 pp.
- Mi R. & Pan G.: “Inhomogeneities of carbonation depth distributions in recycled aggregate concretes: A visualization and quantification study”. Construction and Building Materials, Vol. 330, No. 127300, 2022, 11 pp. https://doi.org/10.1016/j.conbuildmat.2022.127300.
- Kwon S-H., Lee J-S. Kwon S-J. & Kim H-K: “On determination of characteristic in-situ carbonation depth from existing concrete structures”. Construction and Building Materials, Vol. 442, No. 137522, 2024, 11 pp. https://doi.org/10.1016/j.conbuildmat.2024.137522.
- Devore, J.L.: “Probability and Statistics for Engineering and the Sciences”. Cengage Learning, US, 2015, 9th Ed., 768 pp.
- Fisher R.A.: “Statistical methods for research workers”. Oliver & Boyd, Edinburgh, Scotland, 1970, 14th Ed., 378 pp.
- EN 206:2014 + A2:2021: “Concrete. Specification, performance, production and conformity”. European Committee of Standardization, 2014, 93 pp.
- Fédération internationale du béton (fib): “fib MC(2020) complementary guidance on concrete durability”. fib Bulletin No. 112, technical report, 2024, 87 pp. https://doi.org/10.35789/fib.BULL.0112.Ch04.
- Köliö A.: “Propagation of Carbonation Induced Reinforcement Corrosion in Existing Concrete Facades Exposed to the Finnish Climate”. No. 1399 (PhD Thesis), Tampere University of Technology, Dept. of Civil Engineering, Tampere, Finland, 2016, 146 pp. https://urn.fi/URN:ISBN:978-952-15-3800-1.