Have a personal or library account? Click to login
Computer Simulation of Calculation Frequency Deviation from Odd Frequency Spectrum Cover

Computer Simulation of Calculation Frequency Deviation from Odd Frequency Spectrum

By: Peter Andris and  Ivan Frollo  
Open Access
|Jan 2026

References

  1. Brigham, E. O. (1973). The Fast Fourier Transform. Prentice-Hall, ISBN 978-0133074963.
  2. Čížek, V. (1981). Discrete Fourier Transforms and their Applications. Prague, Czech Republic: SNTL, ISBN 978-0852748008. (in Czech)
  3. Andris, P., Szomolányi, P., Strolka, I., Banič, B., Bačiak, L., Weis, J., Jellúš, V., Frollo, I. (2003). Two approaches to measurement of the signal frequency in NMR based magnetic field stabiliser. Measurement Science Review, 3, 53–56. https://www.measurement.sk/2003/S3/Andris1.pdf
  4. Andris, P., Frollo, I., Přibil, J., Gogola, D., Dermek, T. (2023) Conversion of the Bruker Minispec instrumentation into the static magnetic field standard. In Measurement Science Review, 23, (3), 124–129. https://doi.org/10.2478/msr-2023-0016
  5. Andris, P., Frollo, I. (2024). Calculation of the main frequency of an NMR signal from an even frequency spectrum. Measurement Science Review, 24 (6), 211–214. https://doi.org/10.2478/msr-2024-0028
  6. Ulvr, M., Kupec, J. (2018). Improvements to the NMR method with flowing water at CMI. IEEE Transaction on Instrumentation and Measurement, 67 (1), 204–208. https://doi.org/10.1109/TIM.2017.2756119
  7. Hoult, D. I., Richards, R. E. (1976). The signal-to-noise ratio of the nuclear magnetic resonance experiment. Journal of Magnetic Resonance, 24 (1), 71–85. https://doi.org/10.1016/0022-2364(76)90233-X
  8. Hoult, D. I., Lauterbur, P. C. (1979). The sensitivity of the zeugmatographic experiment involving human samples. Journal of Magnetic Resonance, 34 (2), 425–433. https://doi.org/10.1016/0022-2364(79)90019-2
  9. Weis, J., Ericsson, A., Hemmingsson, A. (1999). Chemical shift artifact-free microscopy: Spectroscopic microimaging of the human skin. Magnetic Resonance in Medicine, 41 (5), 904–908. https://doi.org/10.1002/(SICI)1522-2594(199905)41:5%3C904::AID-MRM8%3E3.0.CO;2-4
  10. Bartusek, K., Dokoupil, Z., Gescheidtova, E. (2007). Mapping of magnetic field around small coil using the magnetic resonance method. Measurement Science and Technology, 18 (7), 2223–2230. https://doi.org/10.1088/0957-0233/18/7/056
  11. Nešpor, D., Bartusek, K., Dokoupil, Z. (2014). Comparing saddle, slotted-tube and parallel-plate coils for magnetic resonance imaging. Measurement Science Review, 14 (3), 171–176. https://doi.org/10.2478/msr-2014-0023
  12. Latta, P., Gruwel, M. L. H., Volotovskyy, V., Weber, M. H., Tomanek, B. (2008). Single-point imaging with a variable phase encoding interval. Magnetic Resonance Imaging, 26 (1), 109–116. https://doi.org/10.1016/j.mri.2007.05.004
  13. Witkovsky, V., Frollo, I. (2020). Measurement science is the science of sciences - there is no science without measurement. Measurement Science Review, 20 (1), 1–5. https://doi.org/10.2478/msr-2020-0001
Language: English
Page range: 10 - 13
Submitted on: Jun 26, 2025
|
Accepted on: Nov 10, 2025
|
Published on: Jan 5, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2026 Peter Andris, Ivan Frollo, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.